論文の概要: Test-Time Adaptation for Keypoint-Based Spacecraft Pose Estimation Based on Predicted-View Synthesis
- arxiv url: http://arxiv.org/abs/2410.04298v1
- Date: Sat, 5 Oct 2024 22:24:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:39:47.419626
- Title: Test-Time Adaptation for Keypoint-Based Spacecraft Pose Estimation Based on Predicted-View Synthesis
- Title(参考訳): 予測ビュー合成に基づくキーポイント型宇宙機姿勢推定のためのテスト時間適応
- Authors: Juan Ignacio Bravo Pérez-Villar, Álvaro García-Martín, Jesús Bescós, Juan C. SanMiguel,
- Abstract要約: 宇宙船のポーズ推定のための教師付きアルゴリズムは、合成データに基づいて訓練された場合、性能が低下する。
近接動作中に取得した画像間の時間的冗長性を利用したテスト時間適応手法を提案する。
- 参考スコア(独自算出の注目度): 9.273012275620527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the difficulty of replicating the real conditions during training, supervised algorithms for spacecraft pose estimation experience a drop in performance when trained on synthetic data and applied to real operational data. To address this issue, we propose a test-time adaptation approach that leverages the temporal redundancy between images acquired during close proximity operations. Our approach involves extracting features from sequential spacecraft images, estimating their poses, and then using this information to synthesise a reconstructed view. We establish a self-supervised learning objective by comparing the synthesised view with the actual one. During training, we supervise both pose estimation and image synthesis, while at test-time, we optimise the self-supervised objective. Additionally, we introduce a regularisation loss to prevent solutions that are not consistent with the keypoint structure of the spacecraft. Our code is available at: https://github.com/JotaBravo/spacecraft-tta.
- Abstract(参考訳): 訓練中の実際の状態を再現するのは難しいため、宇宙船の監督されたアルゴリズムは、合成データに基づいて訓練し、実際の運用データに適用した場合、性能が低下する。
そこで本研究では,近接操作中に取得した画像間の時間的冗長性を利用したテスト時間適応手法を提案する。
我々のアプローチでは、連続した宇宙船画像から特徴を抽出し、そのポーズを推定し、その情報を用いて再構成されたビューを合成する。
我々は,合成された視点を実際の視点と比較することにより,自己指導型学習目標を確立する。
トレーニング中はポーズ推定と画像合成の両方を監督し,テスト時には自己監督対象を最適化する。
さらに、宇宙船のキーポイント構造に整合しない解を避けるために、正規化損失を導入する。
私たちのコードは、https://github.com/JotaBravo/spacecraft-tta.comで利用可能です。
関連論文リスト
- Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
本稿では,実世界の課題に対して,大規模な事前学習モデルを微調整するための一連の優れたプラクティスを統合する。
具体的には,合成データと実運転データとの相違を考慮に入れたいくつかの戦略を開発する。
我々の洞察は、先行芸術よりも新しいビュー合成のためのFIDを68.8%値下げする効果のある微調整につながる。
論文 参考訳(メタデータ) (2024-12-19T03:39:13Z) - Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model [63.336123527432136]
我々は,リアクティブ閉ループ評価を可能にする生成フレームワークであるBench2Drive-Rを紹介する。
既存の自動運転用ビデオ生成モデルとは異なり、提案された設計はインタラクティブなシミュレーションに適したものである。
我々は、Bench2Drive-Rの生成品質を既存の生成モデルと比較し、最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-12-11T06:35:18Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - Automatic UAV-based Airport Pavement Inspection Using Mixed Real and
Virtual Scenarios [3.0874677990361246]
本稿では,UAVが捉えた画像を用いて,舗装の苦悩を自動的に識別する視覚的アプローチを提案する。
提案手法は,画像の欠陥を分割する深層学習(DL)に基づいている。
合成および実訓練画像からなる混合データセットを使用することで、実アプリケーションシナリオでトレーニングモデルをテストする場合、より良い結果が得られることを示す。
論文 参考訳(メタデータ) (2024-01-11T16:30:07Z) - A Survey on Deep Learning-Based Monocular Spacecraft Pose Estimation:
Current State, Limitations and Prospects [7.08026800833095]
非協力宇宙船の姿勢を推定することは、軌道上の視覚ベースのシステムを実現するための重要なコンピュータビジョン問題である。
コンピュータビジョンの一般的な傾向に続き、この問題を解決するためにディープラーニング(DL)手法を活用する研究がますます増えている。
有望な研究段階の結果にもかかわらず、実際のミッションでこのような方法が使われるのを防ぐ大きな課題が今も残っている。
論文 参考訳(メタデータ) (2023-05-12T09:52:53Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
DRLAVTと命名されたDQNアルゴリズムに基づくエンドツーエンドのアクティブなトラッキング手法を提案する。
追尾宇宙船のアプローチを、色やRGBD画像にのみ依存した任意の空間の非協力目標に導くことができる。
位置ベースのビジュアルサーボベースラインアルゴリズムでは、最先端の2DモノクロトラッカーであるSiamRPNをはるかに上回っている。
論文 参考訳(メタデータ) (2021-12-18T06:12:24Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
本稿では,この予測タスクを自己監督として利用し,画像シーケンス表現のための新しいオブジェクト中心モデルを構築する。
私たちのフレームワークは、手動アノテーションや事前トレーニングされたネットワークを使わずにトレーニングできます。
最初の実験では、提案されたパイプラインがオブジェクト中心のビデオ予測への有望なステップであることを確認した。
論文 参考訳(メタデータ) (2021-03-09T19:14:33Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
本稿では,ビデオ中のフレームの粗いサブセットに対してのみアノテーションが利用できる場合に,時間とともに光度整合性を活用する手法を提案する。
本モデルでは,ポーズを推定することにより,手や物体を3Dで共同で再構成するカラーイメージをエンドツーエンドに訓練する。
提案手法は,3次元手動画像再構成の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-04-28T12:03:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。