Toward Debugging Deep Reinforcement Learning Programs with RLExplorer
- URL: http://arxiv.org/abs/2410.04322v1
- Date: Sun, 6 Oct 2024 01:01:21 GMT
- Title: Toward Debugging Deep Reinforcement Learning Programs with RLExplorer
- Authors: Rached Bouchoucha, Ahmed Haj Yahmed, Darshan Patil, Janarthanan Rajendran, Amin Nikanjam, Sarath Chandar, Foutse Khomh,
- Abstract summary: We propose RLExplorer, the first fault diagnosis approach for DRL-based software systems.
RLExplorer automatically monitors training traces and runs diagnosis routines based on properties of the DRL learning dynamics.
It then logs the results of these diagnoses as warnings that cover theoretical concepts, recommended practices, and potential solutions.
- Score: 19.91393937968652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (DRL) has shown success in diverse domains such as robotics, computer games, and recommendation systems. However, like any other software system, DRL-based software systems are susceptible to faults that pose unique challenges for debugging and diagnosing. These faults often result in unexpected behavior without explicit failures and error messages, making debugging difficult and time-consuming. Therefore, automating the monitoring and diagnosis of DRL systems is crucial to alleviate the burden on developers. In this paper, we propose RLExplorer, the first fault diagnosis approach for DRL-based software systems. RLExplorer automatically monitors training traces and runs diagnosis routines based on properties of the DRL learning dynamics to detect the occurrence of DRL-specific faults. It then logs the results of these diagnoses as warnings that cover theoretical concepts, recommended practices, and potential solutions to the identified faults. We conducted two sets of evaluations to assess RLExplorer. Our first evaluation of faulty DRL samples from Stack Overflow revealed that our approach can effectively diagnose real faults in 83% of the cases. Our second evaluation of RLExplorer with 15 DRL experts/developers showed that (1) RLExplorer could identify 3.6 times more defects than manual debugging and (2) RLExplorer is easily integrated into DRL applications.
Related papers
- Unsupervised-to-Online Reinforcement Learning [59.910638327123394]
Unsupervised-to-online RL (U2O RL) replaces domain-specific supervised offline RL with unsupervised offline RL.
U2O RL not only enables reusing a single pre-trained model for multiple downstream tasks, but also learns better representations.
We empirically demonstrate that U2O RL achieves strong performance that matches or even outperforms previous offline-to-online RL approaches.
arXiv Detail & Related papers (2024-08-27T05:23:45Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
Deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments.
DRL faces certain limitations, including low sample efficiency and poor generalization.
We present how to leverage generative AI (GAI) to address these issues and enhance the performance of DRL algorithms.
arXiv Detail & Related papers (2024-05-31T01:25:40Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
We present a novel abstraction on the dataflows of RL training, which unifies diverse RL training applications into a general framework.
We develop a scalable, efficient, and distributed RL system called ReaLly scalableRL, which allows efficient and massively parallelized training.
SRL is the first in the academic community to perform RL experiments at a large scale with over 15k CPU cores.
arXiv Detail & Related papers (2023-06-29T05:16:25Z) - Testing of Deep Reinforcement Learning Agents with Surrogate Models [10.243488468625786]
Deep Reinforcement Learning (DRL) has received a lot of attention from the research community in recent years.
In this paper, we propose a search-based approach to test such agents.
arXiv Detail & Related papers (2023-05-22T06:21:39Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - A Comparison of Reinforcement Learning Frameworks for Software Testing
Tasks [14.22330197686511]
Deep Reinforcement Learning (DRL) has been successfully employed in complex testing tasks such as game testing, regression testing, and test case prioritization.
DRL frameworks offer well-maintained implemented state-of-the-art DRL algorithms to facilitate and speed up the development of DRL applications.
There is no study that empirically evaluates the effectiveness and performance of implemented algorithms in DRL frameworks.
arXiv Detail & Related papers (2022-08-25T14:52:16Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL)
By replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code.
We show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
arXiv Detail & Related papers (2021-06-04T03:08:43Z) - Faults in Deep Reinforcement Learning Programs: A Taxonomy and A
Detection Approach [13.57291726431012]
Deep Reinforcement Learning (DRL) is the application of Deep Learning in the domain of Reinforcement Learning (RL)
In this paper, we present the first attempt to categorize faults occurring in DRL programs.
We have defined a meta-model of DRL programs and developed DRLinter, a model-based fault detection approach.
arXiv Detail & Related papers (2021-01-01T01:49:03Z) - Auto-Agent-Distiller: Towards Efficient Deep Reinforcement Learning
Agents via Neural Architecture Search [14.292072505007974]
We propose an Auto-Agent-Distiller (A2D) framework to automatically search for the optimal DRL agents for various tasks.
We demonstrate that vanilla NAS can easily fail in searching for the optimal agents, due to its resulting high variance in DRL training stability.
We then develop a novel distillation mechanism to distill the knowledge from both the teacher agent's actor and critic to stabilize the searching process and improve the searched agents' optimality.
arXiv Detail & Related papers (2020-12-24T04:07:36Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRL is a deep reinforcement learning based algorithm for pruning neural networks.
It achieves sparsity and accuracy comparable to current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-09T13:06:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.