Ordinal Preference Optimization: Aligning Human Preferences via NDCG
- URL: http://arxiv.org/abs/2410.04346v1
- Date: Sun, 6 Oct 2024 03:49:28 GMT
- Title: Ordinal Preference Optimization: Aligning Human Preferences via NDCG
- Authors: Yang Zhao, Yixin Wang, Mingzhang Yin,
- Abstract summary: We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
- Score: 28.745322441961438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning Large Language Models (LLMs) with diverse human preferences is a pivotal technique for controlling model behaviors and enhancing generation quality. Reinforcement Learning from Human Feedback (RLHF), Direct Preference Optimization (DPO), and their variants optimize language models by pairwise comparisons. However, when multiple responses are available, these approaches fall short of leveraging the extensive information in the ranking given by the reward models or human feedback. In this work, we propose a novel listwise approach named Ordinal Preference Optimization (OPO), which employs the Normalized Discounted Cumulative Gain (NDCG), a widely-used ranking metric, to better utilize relative proximity within ordinal multiple responses. We develop an end-to-end preference optimization algorithm by approximating NDCG with a differentiable surrogate loss. This approach builds a connection between ranking models in information retrieval and the alignment problem. In aligning multi-response datasets assigned with ordinal rewards, OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval. Moreover, we demonstrate that increasing the pool of negative samples can enhance model performance by reducing the adverse effects of trivial negatives.
Related papers
- Optimizing Preference Alignment with Differentiable NDCG Ranking [9.594183083553245]
Recent studies have uncovered a substantial discrepancy between the theoretical aspirations of preference learning and its real-world results.
This paper introduces underlineDirect underlineRanking underlinePreference underlineOptimization (O), a novel method that views human preference alignment as a Learning-to-Rank task.
arXiv Detail & Related papers (2024-10-17T08:54:57Z) - Understanding Likelihood Over-optimisation in Direct Alignment Algorithms [20.043560907227018]
Direct Alignment Algorithms (DAAs) have emerged as alternatives to online Reinforcement Learning from Human Feedback.
These algorithms aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones.
This work explores the relationship between completion likelihood and model performance in state-of-the-art DAAs.
arXiv Detail & Related papers (2024-10-15T15:14:22Z) - General Preference Modeling with Preference Representations for Aligning Language Models [51.14207112118503]
We introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently.
We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.
Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
A common technique for aligning large language models (LLMs) relies on acquiring human preferences.
We propose a new axis that is based on eliciting preferences jointly over the instruction-response pairs.
We find that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs.
arXiv Detail & Related papers (2024-03-31T02:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.