General Preference Modeling with Preference Representations for Aligning Language Models
- URL: http://arxiv.org/abs/2410.02197v1
- Date: Thu, 3 Oct 2024 04:22:55 GMT
- Title: General Preference Modeling with Preference Representations for Aligning Language Models
- Authors: Yifan Zhang, Ge Zhang, Yue Wu, Kangping Xu, Quanquan Gu,
- Abstract summary: We introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently.
We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.
Our method may enhance the alignment of foundation models with nuanced human values.
- Score: 51.14207112118503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. Although supervised pair preference models (PairPM) can express general preferences, their implementation is highly ad-hoc and cannot guarantee a consistent preference probability of compared pairs. Additionally, they impose high computational costs due to their quadratic query complexity when comparing multiple responses. In this paper, we introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback. Experimental results show that our General Preference representation model (GPM) outperforms the BT reward model on the RewardBench benchmark with a margin of up to 5.6% and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0 and MT-Bench, following the language model post-training with GPO and our general preference model, reveal substantial performance improvements with margins up to 9.3%. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.
Related papers
- Rethinking Bradley-Terry Models in Preference-Based Reward Modeling: Foundations, Theory, and Alternatives [14.401557416713315]
We revisit the foundations of using Bradley-Terry (BT) models in reward modeling.
We argue that the BT model is not a necessary choice from the perspective of downstream optimization.
We propose a simple and straightforward upper-bound algorithm, compatible with off-the-shelf binary classifiers.
arXiv Detail & Related papers (2024-11-07T18:57:03Z) - Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
We introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality.
We train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations.
We show that the selected hybrid mixture achieves better reward model performance compared to using either one exclusively.
arXiv Detail & Related papers (2024-10-24T20:04:15Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - Step-level Value Preference Optimization for Mathematical Reasoning [6.318873143509028]
We introduce a novel algorithm called Step-level Value Preference Optimization (SVPO)
Our method achieves state-of-the-art performance on both in-domain and out-of-domain mathematical reasoning benchmarks.
arXiv Detail & Related papers (2024-06-16T09:06:17Z) - PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences [6.398937923320069]
We propose PAL, a framework to model human preference complementary to existing pretraining strategies.
We show that PAL achieves competitive reward model accuracy compared to strong baselines.
arXiv Detail & Related papers (2024-06-12T17:54:54Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Language model (LM) post-training involves maximizing a reward function that is derived from preference annotations.
DPO is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning.
We analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation [24.374185140811115]
Reinforcement learning from human feedback (RLHF) has been an effective technique for aligning AI systems with human values.
In this paper, we focus on addressing the issues due to the inherent heterogeneity in human preferences, as well as their potential strategic behavior in providing feedback.
We propose two frameworks to address heterogeneous human feedback in principled ways: personalization-based one and aggregation-based one.
arXiv Detail & Related papers (2024-04-30T23:57:23Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
A common technique for aligning large language models (LLMs) relies on acquiring human preferences.
We propose a new axis that is based on eliciting preferences jointly over the instruction-response pairs.
We find that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Axiomatic Preference Modeling for Longform Question Answering [15.675861802061078]
We develop an axiomatic framework to generate a rich variety of preference signals to uphold human preferences.
We use these axiomatic signals to train a model for scoring answers to longform questions.
Our approach yields a Preference Model with only about 220M parameters that agrees with gold human-annotated preference labels more often than GPT-4.
arXiv Detail & Related papers (2023-12-02T23:11:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.