Geometry and Entanglement of Super-Qubit Quantum States
- URL: http://arxiv.org/abs/2410.04361v1
- Date: Sun, 6 Oct 2024 05:11:47 GMT
- Title: Geometry and Entanglement of Super-Qubit Quantum States
- Authors: Oktay K. Pashaev, Aygul Kocak,
- Abstract summary: We introduce the super-qubit quantum state, determined by superposition of the zero and the one super-particle states.
The one qubit state is characterized by points in extended complex plain, equivalent to another super-Bloch sphere.
The super-coherent states are fermion-boson entangled, and the concurrence of states is the product of two concurrences.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the super-qubit quantum state, determined by superposition of the zero and the one super-particle states, which can be represented by points on the super-Bloch sphere. In contrast to the one qubit case, the one super-particle state is characterized by points in extended complex plain, equivalent to another super-Bloch sphere. Then, geometrically, the super-qubit quantum state is represented by two unit spheres, or the direct product of two Bloch spheres. By using the displacement operator, acting on the super-qubit state as the reference state, we construct the super-coherent states, becoming eigenstates of the super-annihilation operator, and characterized by three complex numbers, the displacement parameter and stereographic projections of two super-Bloch spheres. The states are fermion-boson entangled, and the concurrence of states is the product of two concurrences, corresponding to two Bloch spheres. We show geometrical meaning of concurrence as distance from point-state on the sphere to vertical axes - the radius of circle at horizontal plane through the point-state. Then, probabilities of collapse to the north pole state and to the south pole state are equal to half-distances from vertical coordinate of the state to corresponding points at the poles. For complimentary fermion number operator, we get the flipped super-qubit state and corresponding super-coherent state, as eigenstate of transposed super-annihilation operator. The infinite set of Fibonacci oscillating circles in complex plain, and corresponding set of quantum states with uncertainty relations as the ratio of two Fibonacci numbers, and in the limit at infinity becoming the Golden Ratio uncertainty, is derived.
Related papers
- Critical Fermions are Universal Embezzlers [44.99833362998488]
We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
arXiv Detail & Related papers (2024-06-17T17:03:41Z) - The Bell Based Super Coherent States. Uncertainty Relations, Golden Ratio and Fermion-Boson Entanglement [0.0]
A set of maximally fermion-boson entangled Bell super-coherent states is introduced.
A superposition of these states with separable bosonic coherent states is represented by points on the super-Bloch sphere.
Entanglement of bosonic and fermionic degrees of freedom in these states is studied by using displacement bosonic operator.
arXiv Detail & Related papers (2024-05-14T13:36:50Z) - Teleportation of a qubit using exotic entangled coherent states [0.0]
We study the exotic Landau problem at the classical level where two conserved quantities are derived.
We form entangled coherent states which are Bell-like states labeled quasi-Bell states.
The effect of non-maximality of a quasi-Bell state based quantum channel is investigated in the context of a teleportation of a qubit.
arXiv Detail & Related papers (2024-04-03T12:03:38Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Characterizing the superposition of arbitrary random quantum states and
a known quantum state [5.316931601243777]
We investigate the superposition problem of unknown qubit states with respect to a known qubit state.
Under trace-nonincreasing completely positive operations the superposable state sets are located in some circles on the Bloch sphere.
For the high-dimensional case, we illustrate that any superposition transformation protocols will violate the no-cloning principle for almost all the states.
arXiv Detail & Related papers (2023-05-11T01:31:34Z) - Many topological regions on the Bloch sphere of the spin-1/2 double
kicked top [0.0]
Floquet topological systems have been shown to exhibit features not commonly found in conventional topological systems.
This is clearly highlighted in the quantum double kicked rotor coupled to spin-1/2 degrees of freedom.
arXiv Detail & Related papers (2023-01-19T18:36:46Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Majorana bound states in topological insulators with hidden Dirac points [25.488181126364186]
We show that well-defined Majorana bound states can be obtained even in materials with hidden Dirac point.
The obtained topological phase diagram allows one to extract precisely the position of the Dirac point in the spectrum.
arXiv Detail & Related papers (2020-04-22T15:04:39Z) - Entanglement as upper bounded for the nonlocality of a general two-qubit
system [16.676050048472963]
We systematically investigate the relationship between entanglement and nonlocality of a general two-qubit system.
We find that the nonlocality of two different two-qubit states can be optimally stimulated by the same nonlocality test setting.
arXiv Detail & Related papers (2020-04-17T16:42:27Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.