論文の概要: CiMaTe: Citation Count Prediction Effectively Leveraging the Main Text
- arxiv url: http://arxiv.org/abs/2410.04404v1
- Date: Sun, 6 Oct 2024 08:39:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:00:46.494678
- Title: CiMaTe: Citation Count Prediction Effectively Leveraging the Main Text
- Title(参考訳): CiMaTe: メインテキストを効果的に活用するCitation Count予測
- Authors: Jun Hirako, Ryohei Sasano, Koichi Takeda,
- Abstract要約: 主文は引用数予測において重要な要素であるが,本文は典型的に非常に長いため,機械学習モデルでは処理が困難である。
本稿では,紙の断面構造を明示的に把握し,主文を利用したBERTに基づく引用数予測モデルCiMaTeを提案する。
- 参考スコア(独自算出の注目度): 14.279848166377667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of the future citation counts of papers is increasingly important to find interesting papers among an ever-growing number of papers. Although a paper's main text is an important factor for citation count prediction, it is difficult to handle in machine learning models because the main text is typically very long; thus previous studies have not fully explored how to leverage it. In this paper, we propose a BERT-based citation count prediction model, called CiMaTe, that leverages the main text by explicitly capturing a paper's sectional structure. Through experiments with papers from computational linguistics and biology domains, we demonstrate the CiMaTe's effectiveness, outperforming the previous methods in Spearman's rank correlation coefficient; 5.1 points in the computational linguistics domain and 1.8 points in the biology domain.
- Abstract(参考訳): 今後,論文の引用数を予測することは,論文数が増え続ける中で,興味深い論文を見つける上でますます重要である。
論文の本文は引用数予測において重要な要素であるが,本文は典型的に非常に長いため,機械学習モデルでは処理が困難である。
本稿では,論文の断面構造を明示的に把握し,主文を利用したBERTに基づく引用数予測モデルCiMaTeを提案する。
計算言語学および生物学領域の論文による実験を通じて、スピアマンのランク相関係数(計算言語学領域の5.1点、生物学領域の1.8点)において、CiMaTeの有効性を実証した。
関連論文リスト
- CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCiteは紙の意義を測定するための新しい方法だ。
これは、従来のマッチングフレームワークを高次元のテキスト埋め込みに適応させる、新しい因果推論手法であるTextMatchに基づいている。
科学専門家が報告した紙衝撃と高い相関性など,各種基準におけるCausalCiteの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-05T23:09:39Z) - CiteBench: A benchmark for Scientific Citation Text Generation [69.37571393032026]
CiteBenchは引用テキスト生成のベンチマークである。
CiteBenchのコードはhttps://github.com/UKPLab/citebench.comで公開しています。
論文 参考訳(メタデータ) (2022-12-19T16:10:56Z) - Predicting Long-Term Citations from Short-Term Linguistic Influence [20.78217545537925]
研究論文の影響の基準尺度は、その引用回数である。
本稿では,タイムスタンプによる文書収集における言語的影響の定量化手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T22:03:26Z) - Paperswithtopic: Topic Identification from Paper Title Only [5.025654873456756]
人工知能(AI)分野からタイトルとサブフィールドで組み合わせた論文のデータセットを提示する。
また、論文タイトルのみから、論文のAIサブフィールドを予測する方法についても提示する。
変圧器モデルに対しては、モデルの分類過程をさらに説明するために、勾配に基づく注意可視化も提示する。
論文 参考訳(メタデータ) (2021-10-09T06:32:09Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Semantic Analysis for Automated Evaluation of the Potential Impact of
Research Articles [62.997667081978825]
本稿では,情報理論に基づくテキスト意味のベクトル表現のための新しい手法を提案する。
この情報意味論がLeicester Scientific Corpusに基づいてテキスト分類にどのように使用されるかを示す。
テキストの意味を表現するための情報的アプローチは,研究論文の科学的影響を効果的に予測する方法であることを示す。
論文 参考訳(メタデータ) (2021-04-26T20:37:13Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - Longitudinal Citation Prediction using Temporal Graph Neural Networks [27.589741169713825]
シーケンス引用予測のタスクを紹介します。
目標は、学術研究が経時的に受ける引用回数の軌跡を正確に予測することである。
論文 参考訳(メタデータ) (2020-12-10T15:25:16Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - Utilizing Citation Network Structure to Predict Citation Counts: A Deep
Learning Approach [0.0]
本稿では,情報カスケードの効果を組み合わせ,引用数予測問題に注目するエンド・ツー・エンドのディープラーニングネットワークであるDeepCCPを提案する。
6つの実データ集合の実験によると、DeepCCPは引用数予測の精度において最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-06T05:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。