SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference
- URL: http://arxiv.org/abs/2410.04417v3
- Date: Thu, 06 Feb 2025 14:31:16 GMT
- Title: SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference
- Authors: Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, Shanghang Zhang,
- Abstract summary: In vision-language models (VLMs), visual tokens usually bear a significant amount of computational overhead despite sparsity of information in them when compared to text tokens.
We propose a text-guided training-free token optimization mechanism dubbed SparseVLM that eliminates the need of extra parameters or fine-tuning costs.
- Score: 45.11612407862277
- License:
- Abstract: In vision-language models (VLMs), visual tokens usually bear a significant amount of computational overhead despite sparsity of information in them when compared to text tokens. To address this, most existing methods learn a network to prune redundant visual tokens using certain training data. Differently, we propose a text-guided training-free token optimization mechanism dubbed SparseVLM that eliminates the need of extra parameters or fine-tuning costs. Given that visual tokens complement text tokens in VLM's linguistic reasoning, we select relevant text tokens to rate the significance of visual tokens using self-attention matrices and, then, prune visual tokens using the proposed strategy to maximize sparsity while retaining information. In particular, we introduce a rank-based strategy to adaptively determine the sparsification ratio for each layer, alongside a token recycling method that compresses pruned tokens into more compact representations. Experimental results show that SparseVLM increases the efficiency of various VLMs in a number of image and video understanding tasks. For example, LLaVA when equipped with SparseVLM achieves 54% reduction in FLOPs, 37% decrease in CUDA latency while maintaining 97% of its original accuracy. Our code is available at https://github.com/Gumpest/SparseVLMs.
Related papers
- VASparse: Towards Efficient Visual Hallucination Mitigation for Large Vision-Language Model via Visual-Aware Sparsification [44.97217246897902]
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH)
We propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse)
VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed.
arXiv Detail & Related papers (2025-01-11T14:09:34Z) - ST$^3$: Accelerating Multimodal Large Language Model by Spatial-Temporal Visual Token Trimming [14.937905258757635]
$textbfST3$ is a framework designed to accelerate MLLM inference without retraining.
$textbfST3$ can be seamlessly integrated into existing pre-trained MLLMs.
arXiv Detail & Related papers (2024-12-28T10:17:29Z) - [CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster [26.025260449905577]
Existing methods assess the importance of visual tokens based on the text-visual cross-attentions in large language models (LLMs)
We introduce FasterVLM, a training-free visual token pruning method that evaluates the importance of visual tokens more accurately.
FasterVLM can prune 95% of visual tokens while maintaining 90% of the performance of LLaVA-1.5-7B.
arXiv Detail & Related papers (2024-12-02T18:57:40Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Efficient Vision-Language Models by Summarizing Visual Tokens into Compact Registers [32.167072183575925]
We propose a method that reduces the number of visual tokens by summarizing them into a smaller set of register tokens.
Victor shows less than a 4% accuracy drop while reducing the total training time by 43% and boosting the inference throughput by 3.3X.
arXiv Detail & Related papers (2024-10-17T22:45:13Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - ELIP: Efficient Language-Image Pre-training with Fewer Vision Tokens [75.09406436851445]
We propose a vision token pruning and merging method ELIP, to remove less influential tokens based on the supervision of language outputs.
Our experiments demonstrate that with the removal of 30$%$ vision tokens across 12 ViT layers, ELIP maintains significantly comparable performance.
arXiv Detail & Related papers (2023-09-28T05:31:07Z) - How can objects help action recognition? [74.29564964727813]
We investigate how we can use knowledge of objects to design better video models.
First, we propose an object-guided token sampling strategy that enables us to retain a small fraction of the input tokens.
Second, we propose an object-aware attention module that enriches our feature representation with object information.
arXiv Detail & Related papers (2023-06-20T17:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.