Configurable Multilingual ASR with Speech Summary Representations
- URL: http://arxiv.org/abs/2410.04478v1
- Date: Sun, 6 Oct 2024 13:39:15 GMT
- Title: Configurable Multilingual ASR with Speech Summary Representations
- Authors: Harrison Zhu, Ivan Fung, Yingke Zhu, Lahiru Samarakoon,
- Abstract summary: Half of the world's population is multilingual, making multilingual ASR (MASR) essential.
deploying multiple monolingual models is challenging when the ground-truth language is unknown in advance.
We present a novel csvMASR architecture designed to enhance configurability.
- Score: 5.989153210779794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Approximately half of the world's population is multilingual, making multilingual ASR (MASR) essential. Deploying multiple monolingual models is challenging when the ground-truth language is unknown in advance. This motivates research efforts on configurable multilingual MASR models that can be prompted manually or adapted automatically to recognise specific languages. In this paper, we present the Configurable MASR model with Summary Vector (csvMASR), a novel architecture designed to enhance configurability. Our approach leverages adapters and introduces speech summary vector representations, inspired by conversational summary representations in speech diarization, to combine outputs from language-specific components at the utterance level. We also incorporate an auxiliary language classification loss to enhance configurability. Using data from 7 languages in the Multilingual Librispeech (MLS) dataset, csvMASR outperforms existing MASR models and reduces the word error rate (WER) from 10.33\% to 9.95\% when compared with the baseline. Additionally, csvMASR demonstrates superior performance in language classification and prompting tasks.
Related papers
- LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.
LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.
We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
We aim to create a multilingual ALT system with available datasets.
Inspired by architectures that have been proven effective for English ALT, we adapt these techniques to the multilingual scenario.
We evaluate the performance of the multilingual model in comparison to its monolingual counterparts.
arXiv Detail & Related papers (2024-06-25T15:02:32Z) - Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech
Models via Language-Specific Experts [14.999359332108767]
We propose DistilWhisper to bridge the performance gap in ASR for under-represented languages.
Our approach involves two key strategies: lightweight modular ASR fine-tuning of whisper-small using language-specific experts, and knowledge distillation from whisper-large-v2.
Results demonstrate that our approach is more effective than standard fine-tuning or LoRA adapters.
arXiv Detail & Related papers (2023-11-02T08:37:30Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - MultiTACRED: A Multilingual Version of the TAC Relation Extraction
Dataset [6.7839993945546215]
We introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families.
We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models.
We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts.
arXiv Detail & Related papers (2023-05-08T09:48:21Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer [136.09386219006123]
We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages.
MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning.
arXiv Detail & Related papers (2020-04-30T18:54:43Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
arXiv Detail & Related papers (2020-04-09T01:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.