A Pluggable Common Sense-Enhanced Framework for Knowledge Graph Completion
- URL: http://arxiv.org/abs/2410.04488v1
- Date: Sun, 6 Oct 2024 14:06:12 GMT
- Title: A Pluggable Common Sense-Enhanced Framework for Knowledge Graph Completion
- Authors: Guanglin Niu, Bo Li, Siling Feng,
- Abstract summary: We propose a pluggable common sense-enhanced KGC framework that incorporates both fact and common sense for KGC.
This framework is adaptable to different KGs based on their entity concept richness and has the capability to automatically generate explicit or implicit common sense.
Our approach can be integrated as a pluggable module for many knowledge graph embedding (KGE) models.
- Score: 9.686794547679076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph completion (KGC) tasks aim to infer missing facts in a knowledge graph (KG) for many knowledge-intensive applications. However, existing embedding-based KGC approaches primarily rely on factual triples, potentially leading to outcomes inconsistent with common sense. Besides, generating explicit common sense is often impractical or costly for a KG. To address these challenges, we propose a pluggable common sense-enhanced KGC framework that incorporates both fact and common sense for KGC. This framework is adaptable to different KGs based on their entity concept richness and has the capability to automatically generate explicit or implicit common sense from factual triples. Furthermore, we introduce common sense-guided negative sampling and a coarse-to-fine inference approach for KGs with rich entity concepts. For KGs without concepts, we propose a dual scoring scheme involving a relation-aware concept embedding mechanism. Importantly, our approach can be integrated as a pluggable module for many knowledge graph embedding (KGE) models, facilitating joint common sense and fact-driven training and inference. The experiments illustrate that our framework exhibits good scalability and outperforms existing models across various KGC tasks.
Related papers
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - Knowledge Graph Context-Enhanced Diversified Recommendation [53.3142545812349]
This research explores the realm of diversified RecSys within the intricate context of knowledge graphs (KG)
Our contributions include introducing an innovative metric, Entity Coverage, and Relation Coverage, which effectively quantifies diversity within the KG domain.
In tandem with this, we introduce a novel technique named Conditional Alignment and Uniformity (CAU) which encodes KG item embeddings while preserving contextual integrity.
arXiv Detail & Related papers (2023-10-20T03:18:57Z) - On the Sweet Spot of Contrastive Views for Knowledge-enhanced
Recommendation [49.18304766331156]
We propose a new contrastive learning framework for KG-enhanced recommendation.
We construct two separate contrastive views for KG and IG, and maximize their mutual information.
Extensive experimental results on three real-world datasets demonstrate the effectiveness and efficiency of our method.
arXiv Detail & Related papers (2023-09-23T14:05:55Z) - A Probabilistic-Logic based Commonsense Representation Framework for
Modelling Inferences with Multiple Antecedents and Varying Likelihoods [5.87677276882675]
Commonsense knowledge-graphs (CKGs) are important resources towards building machines that can'reason' on text or environmental inputs and make inferences beyond perception.
In this work, we study how commonsense knowledge can be better represented by -- (i) utilizing a probabilistic logic representation scheme to model composite inferential knowledge and represent conceptual beliefs with varying likelihoods, and (ii) incorporating a hierarchical conceptual ontology to identify salient concept-relevant relations and organize beliefs at different conceptual levels.
arXiv Detail & Related papers (2022-11-30T08:44:30Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Knowledge Graph Embedding in E-commerce Applications: Attentive
Reasoning, Explanations, and Transferable Rules [18.63983271518707]
Reasoning tasks such as link prediction and rule induction are important for the development of Knowledge Graphs.
Knowledge Graph Embeddings (KGEs) embedding entities and relations of a KG into continuous vector spaces are proven to be efficient and robust.
But the plausibility and feasibility of applying and deploying KGEs in real-work applications has not been well-explored.
arXiv Detail & Related papers (2021-12-16T03:26:36Z) - EngineKGI: Closed-Loop Knowledge Graph Inference [37.15381932994768]
EngineKGI is a novel closed-loop KG inference framework.
It combines KGE and rule learning to complement each other in a closed-loop pattern.
Our model outperforms other baselines on link prediction tasks.
arXiv Detail & Related papers (2021-12-02T08:02:59Z) - Towards Robust Knowledge Graph Embedding via Multi-task Reinforcement
Learning [44.38215560989223]
Most existing knowledge graph embedding methods assume that all the triple facts in KGs are correct.
This will lead to low-quality and unreliable representations of KGs.
We propose a general multi-task reinforcement learning framework, which can greatly alleviate the noisy data problem.
arXiv Detail & Related papers (2021-11-11T08:51:37Z) - On the Role of Conceptualization in Commonsense Knowledge Graph
Construction [59.39512925793171]
Commonsense knowledge graphs (CKGs) like Atomic and ASER are substantially different from conventional KGs.
We introduce to CKG construction methods conceptualization to view entities mentioned in text as instances of specific concepts or vice versa.
Our methods can effectively identify plausible triples and expand the KG by triples of both new nodes and edges of high diversity and novelty.
arXiv Detail & Related papers (2020-03-06T14:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.