ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection
- URL: http://arxiv.org/abs/2410.04509v2
- Date: Tue, 8 Oct 2024 06:03:46 GMT
- Title: ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection
- Authors: Yibo Yan, Shen Wang, Jiahao Huo, Hang Li, Boyan Li, Jiamin Su, Xiong Gao, Yi-Fan Zhang, Tianlong Xu, Zhendong Chu, Aoxiao Zhong, Kun Wang, Hui Xiong, Philip S. Yu, Xuming Hu, Qingsong Wen,
- Abstract summary: We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
- Score: 60.297079601066784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the field of Multimodal Large Language Models (MLLMs) continues to evolve, their potential to revolutionize artificial intelligence is particularly promising, especially in addressing mathematical reasoning tasks. Current mathematical benchmarks predominantly focus on evaluating MLLMs' problem-solving ability, yet there is a crucial gap in addressing more complex scenarios such as error detection, for enhancing reasoning capability in complicated settings. To fill this gap, we formally formulate the new task: multimodal error detection, and introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in such a task. ErrorRadar evaluates two sub-tasks: error step identification and error categorization, providing a comprehensive framework for evaluating MLLMs' complex mathematical reasoning ability. It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions in an educational organization, with rigorous annotation and rich metadata such as problem type and error category. Through extensive experiments, we evaluated both open-source and closed-source representative MLLMs, benchmarking their performance against educational expert evaluators. Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation. The dataset will be available upon acceptance.
Related papers
- MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark [29.9945601202065]
We propose MathScape, a new benchmark that emphasizes the understanding and application of combined visual and textual information.
MathScape is designed to evaluate photo-based math problem scenarios, assessing the theoretical understanding and application ability of MLLMs.
We conduct a multi-dimensional evaluation on 11 advanced MLLMs, revealing that our benchmark is challenging even for the most sophisticated models.
arXiv Detail & Related papers (2024-08-14T13:23:43Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
Large Language Models (LLMs) have been applied to Math Word Problems (MWPs)
We introduce a novel dataset MWP-MISTAKE, incorporating MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models.
We highlight GPT-$o's superior performance in mistake detection and rectification and the persistent challenges faced by smaller models.
arXiv Detail & Related papers (2024-06-16T08:06:05Z) - Assessing the Emergent Symbolic Reasoning Abilities of Llama Large Language Models [47.129504708849446]
Large Language Models (LLMs) achieve impressive performance in a wide range of tasks.
LLMs show emergent abilities in mathematical reasoning benchmarks.
We evaluate three models of the Llama 2 family on different symbolic reasoning tasks.
arXiv Detail & Related papers (2024-06-05T12:22:43Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Evaluating Mathematical Reasoning Beyond Accuracy [50.09931172314218]
We introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps.
We show that ReasonEval achieves state-of-the-art performance on human-labeled datasets.
We observe that ReasonEval can play a significant role in data selection.
arXiv Detail & Related papers (2024-04-08T17:18:04Z) - MM-MATH: Advancing Multimodal Math Evaluation with Process Evaluation and Fine-grained Classification [41.53026834367054]
This paper introduces a novel benchmark, MM-MATH, for evaluating multimodal math reasoning.
MM-MATH consists of 5,929 open-ended middle school math problems with visual contexts, with fine-grained classification across difficulty, grade level, and knowledge points.
The best-performing model achieves only 31% accuracy on MM-MATH, compared to 82% for humans.
arXiv Detail & Related papers (2024-04-07T22:16:50Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.