Evaluating Mathematical Reasoning Beyond Accuracy
- URL: http://arxiv.org/abs/2404.05692v1
- Date: Mon, 8 Apr 2024 17:18:04 GMT
- Title: Evaluating Mathematical Reasoning Beyond Accuracy
- Authors: Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, Pengfei Liu,
- Abstract summary: We introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps.
We show that ReasonEval achieves state-of-the-art performance on human-labeled datasets.
We observe that ReasonEval can play a significant role in data selection.
- Score: 50.09931172314218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The leaderboard of Large Language Models (LLMs) in mathematical tasks has been continuously updated. However, the majority of evaluations focus solely on the final results, neglecting the quality of the intermediate steps. This oversight can mask underlying problems, such as logical errors or unnecessary steps in the reasoning process. To measure reasoning beyond final-answer accuracy, we introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps. ReasonEval employs $\textit{validity}$ and $\textit{redundancy}$ to characterize the reasoning quality, as well as accompanying LLMs to assess them automatically. Instantiated by base models that possess strong mathematical knowledge and trained with high-quality labeled data, ReasonEval achieves state-of-the-art performance on human-labeled datasets and can accurately detect different types of errors generated by perturbation. When applied to evaluate LLMs specialized in math, we find that an increase in final-answer accuracy does not necessarily guarantee an improvement in the overall quality of the reasoning steps for challenging mathematical problems. Additionally, we observe that ReasonEval can play a significant role in data selection. We release the best-performing model, meta-evaluation script, and all evaluation results at https://github.com/GAIR-NLP/ReasonEval.
Related papers
- Brains vs. Bytes: Evaluating LLM Proficiency in Olympiad Mathematics [2.489157527463306]
Large language models (LLMs) have shown impressive progress in mathematical reasoning tasks.
Recent advances in large language models (LLMs) have shown impressive progress in mathematical reasoning tasks.
arXiv Detail & Related papers (2025-04-01T00:10:10Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.
Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.
We propose Reasoning-Driven Process Reward Modeling (R-PRM)
R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.
We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.
We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - EQUATOR: A Deterministic Framework for Evaluating LLM Reasoning with Open-Ended Questions. # v1.0.0-beta [2.1249213103048414]
We introduce the EQUATOR Evaluator, which combines deterministic scoring with a focus on factual accuracy and robust reasoning assessment.
Using a vector database, EQUATOR pairs open-ended questions with human-evaluated answers, enabling more precise and scalable evaluations.
Our results demonstrate that this framework significantly outperforms traditional multiple-choice evaluations while maintaining high accuracy standards.
arXiv Detail & Related papers (2024-12-31T03:56:17Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - MalAlgoQA: Pedagogical Evaluation of Counterfactual Reasoning in Large Language Models and Implications for AI in Education [2.872215065231376]
This paper introduces MalAlgoQA, a dataset designed to evaluate the counterfactual reasoning capabilities of Large Language Models.
At the heart of MalAlgoQA are malgorithms'' - rationales behind incorrect answer choices that represent flawed yet logically coherent reasoning paths.
arXiv Detail & Related papers (2024-07-01T03:39:13Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
Large Language Models (LLMs) have been applied to Math Word Problems (MWPs)
We introduce a novel dataset MWP-MISTAKE, incorporating MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models.
We highlight GPT-$o's superior performance in mistake detection and rectification and the persistent challenges faced by smaller models.
arXiv Detail & Related papers (2024-06-16T08:06:05Z) - Improving Language Model Reasoning with Self-motivated Learning [60.779625789039486]
textitSelf-motivated Learning framework motivates the model itself to automatically generate rationales on existing datasets.
We train a reward model with the rank to evaluate the quality of rationales, and improve the performance of reasoning through reinforcement learning.
arXiv Detail & Related papers (2024-04-10T14:05:44Z) - MM-MATH: Advancing Multimodal Math Evaluation with Process Evaluation and Fine-grained Classification [41.53026834367054]
This paper introduces a novel benchmark, MM-MATH, for evaluating multimodal math reasoning.
MM-MATH consists of 5,929 open-ended middle school math problems with visual contexts, with fine-grained classification across difficulty, grade level, and knowledge points.
The best-performing model achieves only 31% accuracy on MM-MATH, compared to 82% for humans.
arXiv Detail & Related papers (2024-04-07T22:16:50Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
One of the unsolved challenges in the field of Explainable AI (XAI) is determining how to most reliably estimate the quality of an explanation method.
We address this issue through a meta-evaluation of different quality estimators in XAI.
Our novel framework, MetaQuantus, analyses two complementary performance characteristics of a quality estimator.
arXiv Detail & Related papers (2023-02-14T18:59:02Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - Model Optimization in Imbalanced Regression [2.580765958706854]
Imbalanced domain learning aims to produce accurate models in predicting instances that, though underrepresented, are of utmost importance for the domain.
One of the main reasons for this is the lack of loss functions capable of focusing on minimizing the errors of extreme (rare) values.
Recently, an evaluation metric was introduced: Squared Error Relevance Area (SERA)
This metric posits a bigger emphasis on the errors committed at extreme values while also accounting for the performance in the overall target variable domain.
arXiv Detail & Related papers (2022-06-20T20:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.