Social Choice for Heterogeneous Fairness in Recommendation
- URL: http://arxiv.org/abs/2410.04551v1
- Date: Sun, 6 Oct 2024 17:01:18 GMT
- Title: Social Choice for Heterogeneous Fairness in Recommendation
- Authors: Amanda Aird, Elena Štefancová, Cassidy All, Amy Voida, Martin Homola, Nicholas Mattei, Robin Burke,
- Abstract summary: Algorithmic fairness in recommender systems requires close attention to the needs of a diverse set of stakeholders.
Previous work has often been limited by fixed, single-objective definitions of fairness.
Our work approaches recommendation fairness from the standpoint of computational social choice.
- Score: 9.753088666705985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic fairness in recommender systems requires close attention to the needs of a diverse set of stakeholders that may have competing interests. Previous work in this area has often been limited by fixed, single-objective definitions of fairness, built into algorithms or optimization criteria that are applied to a single fairness dimension or, at most, applied identically across dimensions. These narrow conceptualizations limit the ability to adapt fairness-aware solutions to the wide range of stakeholder needs and fairness definitions that arise in practice. Our work approaches recommendation fairness from the standpoint of computational social choice, using a multi-agent framework. In this paper, we explore the properties of different social choice mechanisms and demonstrate the successful integration of multiple, heterogeneous fairness definitions across multiple data sets.
Related papers
- Exploring Social Choice Mechanisms for Recommendation Fairness in SCRUF [11.43931298398417]
A social choice formulation of the fairness problem offers a flexible and multi-aspect alternative to fairness-aware recommendations.
We show that different classes of choice and allocation mechanisms yield different but consistent fairness / accuracy tradeoffs.
arXiv Detail & Related papers (2023-09-10T17:47:21Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
We introduce a conceptual and computational framework for assessing how the choice of target affects individuals' outcomes.
We show that the level of multiplicity that stems from target variable choice can be greater than that stemming from nearly-optimal models of a single target.
arXiv Detail & Related papers (2023-06-23T18:57:14Z) - Dynamic fairness-aware recommendation through multi-agent social choice [10.556124653827647]
We argue that fairness in real-world application settings in general, and especially in the context of personalized recommendation, is much more complex and multi-faceted.
We propose a model to formalize multistakeholder fairness in recommender systems as a two stage social choice problem.
arXiv Detail & Related papers (2023-03-02T05:06:17Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Social Diversity Reduces the Complexity and Cost of Fostering Fairness [63.70639083665108]
We investigate the effects of interference mechanisms which assume incomplete information and flexible standards of fairness.
We quantify the role of diversity and show how it reduces the need for information gathering.
Our results indicate that diversity changes and opens up novel mechanisms available to institutions wishing to promote fairness.
arXiv Detail & Related papers (2022-11-18T21:58:35Z) - Fair Incentives for Repeated Engagement [0.46040036610482665]
We study a problem of finding optimal monetary incentive schemes for retention when faced with agents whose participation decisions depend on the incentive they receive.
We show that even in the absence of explicit discrimination, policies may unintentionally discriminate between agents of different types by varying the type composition of the system.
arXiv Detail & Related papers (2021-10-28T04:13:53Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Simultaneous Relevance and Diversity: A New Recommendation Inference
Approach [81.44167398308979]
We propose a new approach, which extends the general collaborative filtering (CF) by introducing a new way of CF inference, negative-to-positive.
Our approach is applicable to a wide range of recommendation scenarios/use-cases at various sophistication levels.
Our analysis and experiments on public datasets and real-world production data show that our approach outperforms existing methods on relevance and diversity simultaneously.
arXiv Detail & Related papers (2020-09-27T22:20:12Z) - "And the Winner Is...": Dynamic Lotteries for Multi-group Fairness-Aware
Recommendation [37.35485045640196]
We argue that the previous literature has been based on simple, uniform and often uni-dimensional notions of fairness assumptions.
We explicitly represent the design decisions that enter into the trade-off between accuracy and fairness across multiply-defined and intersecting protected groups.
We formulate lottery-based mechanisms for choosing between fairness concerns, and demonstrate their performance in two recommendation domains.
arXiv Detail & Related papers (2020-09-05T20:15:14Z) - Opportunistic Multi-aspect Fairness through Personalized Re-ranking [5.8562079474220665]
We present a re-ranking approach to fairness-aware recommendation that learns individual preferences across multiple fairness dimensions.
We show that our opportunistic and metric-agnostic approach achieves a better trade-off between accuracy and fairness than prior re-ranking approaches.
arXiv Detail & Related papers (2020-05-21T04:25:20Z) - Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive [57.47546090379434]
We study the public persuasion problem in the general setting with: (i) arbitrary state spaces; (ii) arbitrary action spaces; (iii) arbitrary sender's utility functions.
We provide a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, in specific settings, yields a QPTAS.
arXiv Detail & Related papers (2020-02-12T18:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.