"And the Winner Is...": Dynamic Lotteries for Multi-group Fairness-Aware
Recommendation
- URL: http://arxiv.org/abs/2009.02590v1
- Date: Sat, 5 Sep 2020 20:15:14 GMT
- Title: "And the Winner Is...": Dynamic Lotteries for Multi-group Fairness-Aware
Recommendation
- Authors: Nasim Sonboli, Robin Burke, Nicholas Mattei, Farzad Eskandanian, Tian
Gao
- Abstract summary: We argue that the previous literature has been based on simple, uniform and often uni-dimensional notions of fairness assumptions.
We explicitly represent the design decisions that enter into the trade-off between accuracy and fairness across multiply-defined and intersecting protected groups.
We formulate lottery-based mechanisms for choosing between fairness concerns, and demonstrate their performance in two recommendation domains.
- Score: 37.35485045640196
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As recommender systems are being designed and deployed for an increasing
number of socially-consequential applications, it has become important to
consider what properties of fairness these systems exhibit. There has been
considerable research on recommendation fairness. However, we argue that the
previous literature has been based on simple, uniform and often uni-dimensional
notions of fairness assumptions that do not recognize the real-world
complexities of fairness-aware applications. In this paper, we explicitly
represent the design decisions that enter into the trade-off between accuracy
and fairness across multiply-defined and intersecting protected groups,
supporting multiple fairness metrics. The framework also allows the recommender
to adjust its performance based on the historical view of recommendations that
have been delivered over a time horizon, dynamically rebalancing between
fairness concerns. Within this framework, we formulate lottery-based mechanisms
for choosing between fairness concerns, and demonstrate their performance in
two recommendation domains.
Related papers
- A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Dynamic fairness-aware recommendation through multi-agent social choice [10.556124653827647]
We argue that fairness in real-world application settings in general, and especially in the context of personalized recommendation, is much more complex and multi-faceted.
We propose a model to formalize multistakeholder fairness in recommender systems as a two stage social choice problem.
arXiv Detail & Related papers (2023-03-02T05:06:17Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Balancing Accuracy and Fairness for Interactive Recommendation with
Reinforcement Learning [68.25805655688876]
Fairness in recommendation has attracted increasing attention due to bias and discrimination possibly caused by traditional recommenders.
We propose a reinforcement learning based framework, FairRec, to dynamically maintain a long-term balance between accuracy and fairness in IRS.
Extensive experiments validate that FairRec can improve fairness, while preserving good recommendation quality.
arXiv Detail & Related papers (2021-06-25T02:02:51Z) - Simultaneous Relevance and Diversity: A New Recommendation Inference
Approach [81.44167398308979]
We propose a new approach, which extends the general collaborative filtering (CF) by introducing a new way of CF inference, negative-to-positive.
Our approach is applicable to a wide range of recommendation scenarios/use-cases at various sophistication levels.
Our analysis and experiments on public datasets and real-world production data show that our approach outperforms existing methods on relevance and diversity simultaneously.
arXiv Detail & Related papers (2020-09-27T22:20:12Z) - On the Identification of Fair Auditors to Evaluate Recommender Systems
based on a Novel Non-Comparative Fairness Notion [1.116812194101501]
Decision-support systems have been found to be discriminatory in the context of many practical deployments.
We propose a new fairness notion based on the principle of non-comparative justice.
We show that the proposed fairness notion also provides guarantees in terms of comparative fairness notions.
arXiv Detail & Related papers (2020-09-09T16:04:41Z) - HyperFair: A Soft Approach to Integrating Fairness Criteria [17.770533330914102]
We introduce HyperFair, a framework for enforcing soft fairness constraints in a hybrid recommender system.
We propose two ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template.
We empirically validate our approach by implementing multiple HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender.
arXiv Detail & Related papers (2020-09-05T05:00:06Z) - Achieving Fairness via Post-Processing in Web-Scale Recommender Systems [6.5191290612443105]
We extend the definitions of fairness to recommender systems, namely equality of opportunity and equalized odds.
We propose scalable methods for achieving equality of opportunity and equalized odds in rankings in the presence of position bias.
arXiv Detail & Related papers (2020-06-19T20:12:13Z) - Opportunistic Multi-aspect Fairness through Personalized Re-ranking [5.8562079474220665]
We present a re-ranking approach to fairness-aware recommendation that learns individual preferences across multiple fairness dimensions.
We show that our opportunistic and metric-agnostic approach achieves a better trade-off between accuracy and fairness than prior re-ranking approaches.
arXiv Detail & Related papers (2020-05-21T04:25:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.