Phase Diagrams of Relativistic Selfinteracting Boson System
- URL: http://arxiv.org/abs/2410.04580v1
- Date: Sun, 6 Oct 2024 18:33:41 GMT
- Title: Phase Diagrams of Relativistic Selfinteracting Boson System
- Authors: V. Gnatovskyy, D. Anchishkin, D. Zhuravel, V. Karpenko,
- Abstract summary: We investigate a system of interacting bosons at finite temperatures and finite isospin densities in a mean-field approach.
It is shown that in the case of attraction between particles in a bosonic system, a liquid-gas phase transition develops against the background of the Bose-Einstein condensate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the Canonical Ensemble, we investigate a system of interacting relativistic bosons at finite temperatures and finite isospin densities in a mean-field approach. The mean field contains both attractive and repulsive terms. Temperature and isospin-density dependencies of thermodynamic quantities were obtained. It is shown that in the case of attraction between particles in a bosonic system, a liquid-gas phase transition develops against the background of the Bose-Einstein condensate. The corresponding phase diagrams are given. We explain the reasons why the presence of a Bose condensate significantly increases the critical temperature of the liquid-gas phase transition compared to that obtained for the same system within the framework of the Boltzmann statistics. Our results may have implications for the interpretation of experimental data, in particular, how sensitive the critical point of the mixed phase is to the presence of the Bose-Einstein condensate.
Related papers
- Fröhlich versus Bose-Einstein Condensation in Pumped Bosonic Systems [0.9243767143022278]
Fr"ohlich-condensation is a hypothesis of Bose-Einstein-like condensation in living systems at ambient temperatures.
Here, we elucidate the essential features of magnon-condensation in an open quantum system.
Our derived equations of motion for expected magnon occupations turns out to be similar in form to the rate equations governing Fr"ohlich-condensation.
arXiv Detail & Related papers (2024-10-30T23:52:10Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Phase diffusion and fluctuations in a dissipative Bose-Josephson
junction [0.0]
We analyze the phase diffusion, quantum fluctuations and their spectral features of an one-dimensional Bose-Josephson junction (BJJ) coupled to a bosonic heat bath.
We show the dependence of the phase diffusion coefficient on the on-site interaction parameter $U$ and the temperature in zero-phase and $pi$-phase modes.
arXiv Detail & Related papers (2022-11-14T09:37:08Z) - Thermodynamic Phase Diagram of Two-Dimensional Bosons in a Quasicrystal
Potential [0.0]
We determine the thermodynamic phase diagram of interacting bosons in a two-dimensional, homogeneous quasicrystal potential.
Our results are found using quantum Monte Carlo simulations.
In particular, we demonstrate stabilization of a genuine Bose glass phase against the normal fluid in sizable parameter ranges.
arXiv Detail & Related papers (2022-10-27T15:09:36Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Condensation driven by a quantum phase transition [0.0]
The phases displayed by the system at zero temperature establish recognizable patterns at finite temperature.
The gaped phase induces a state of collectivism/condensation at finite temperature in which population cumulates into the ground state in spite of interacting attractively.
arXiv Detail & Related papers (2021-06-24T20:08:59Z) - Impurity dephasing in a Bose-Hubbard model [0.0]
We study the dynamics of a two-level impurity embedded in a two-dimensional Bose-Hubbard model at zero temperature.
Results for the decoherence across the whole phase diagram are presented, with a focus on the critical region close to the transition between superfluid and Mott insulator.
arXiv Detail & Related papers (2020-11-27T14:44:13Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.