Fröhlich versus Bose-Einstein Condensation in Pumped Bosonic Systems
- URL: http://arxiv.org/abs/2411.00058v1
- Date: Wed, 30 Oct 2024 23:52:10 GMT
- Title: Fröhlich versus Bose-Einstein Condensation in Pumped Bosonic Systems
- Authors: Wenhao Xu, Andrey A. Bagrov, Farhan T. Chowdhury, Luke D. Smith, Daniel R. Kattnig, Hilbert J. Kappen, Mikhail I. Katsnelson,
- Abstract summary: Fr"ohlich-condensation is a hypothesis of Bose-Einstein-like condensation in living systems at ambient temperatures.
Here, we elucidate the essential features of magnon-condensation in an open quantum system.
Our derived equations of motion for expected magnon occupations turns out to be similar in form to the rate equations governing Fr"ohlich-condensation.
- Score: 0.9243767143022278
- License:
- Abstract: Magnon-condensation, which emerges in pumped bosonic systems at room temperature, continues to garner great interest for its long-lived coherence. While traditionally formulated in terms of Bose-Einstein condensation, which typically occurs at ultra-low temperatures, it could potentially also be explained by Fr\"ohlich-condensation, a hypothesis of Bose-Einstein-like condensation in living systems at ambient temperatures. Here, we elucidate the essential features of magnon-condensation in an open quantum system (OQS) formulation, wherein magnons dissipatively interact with a phonon bath. Our derived equations of motion for expected magnon occupations turns out to be similar in form to the rate equations governing Fr\"ohlich-condensation. Provided that specific system parameters result in correlations amplifying or diminishing the condensation effects, we thereby posit that our treatment offers a better description of high-temperature condensation as opposed to traditional descriptions using equilibrium thermodynamics. By comparing our OQS derivation with the original uncorrelated and previous semi-classical rate equations, we furthermore highlight how both classical anti-correlations and quantum correlations alter the bosonic occupation distribution.
Related papers
- Phase Diagrams of Relativistic Selfinteracting Boson System [0.0]
We investigate a system of interacting bosons at finite temperatures and finite isospin densities in a mean-field approach.
It is shown that in the case of attraction between particles in a bosonic system, a liquid-gas phase transition develops against the background of the Bose-Einstein condensate.
arXiv Detail & Related papers (2024-10-06T18:33:41Z) - Diffusion coefficients preserving long-time correlations: Consequences on the Einstein relation and on entanglement in a bosonic Bogoliubov system [0.0]
We analytically derive the diffusion coefficients that drive a system of $N$ coupled harmonic oscillators to an equilibrium state exhibiting persistent correlations.
We also investigate the entanglement evolution in a bipartite bosonic Bogoliubov system initially prepared in a thermal squeezed state.
arXiv Detail & Related papers (2023-09-28T17:54:27Z) - Quantum engines with interacting Bose-Einstein condensates [0.0]
We consider a quantum Otto cycle with an interacting Bose-Einstein condensate at finite temperature.
We present a procedure to evolve this system in time in three dimensions.
arXiv Detail & Related papers (2023-08-23T15:43:14Z) - Quantum and classical contributions to entropy production in fermionic
and bosonic Gaussian systems [0.0]
entropy production is related to generation of correlations between degrees of freedom of the system and its thermal environment.
We show that for fermions the entropy production is mostly quantum due to the parity superselection rule.
In bosonic systems a much larger amount of correlations can be accessed through Gaussian measurements.
arXiv Detail & Related papers (2023-03-22T17:05:15Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics [0.0]
We derive a master equation that accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath.
Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps.
arXiv Detail & Related papers (2020-08-05T15:19:29Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.