論文の概要: Control Large Language Models via Divide and Conquer
- arxiv url: http://arxiv.org/abs/2410.04628v1
- Date: Sun, 6 Oct 2024 21:20:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 06:26:32.345954
- Title: Control Large Language Models via Divide and Conquer
- Title(参考訳): ディバイドとコンカーによる大規模言語モデル制御
- Authors: Bingxuan Li, Yiwei Wang, Tao Meng, Kai-Wei Chang, Nanyun Peng,
- Abstract要約: 本稿では,Lexically Constrained Generation(LCG)に着目し,大規模言語モデル(LLM)のプロンプトベース制御による制御可能生成について検討する。
我々は,レキシカル制約を満たすためのLLMの性能を,プロンプトベース制御により評価し,下流アプリケーションでの有効性を検証した。
- 参考スコア(独自算出の注目度): 94.48784966256463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG). We systematically evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications. We conclude that LLMs face significant challenges in consistently satisfying lexical constraints with prompt-based control. We identified three key limitations of LLMs for LCG, including (1) position bias, where LLMs tend to satisfy constraints that appear in specific positions within the input; (2) low responsiveness to decoding parameters, which render minimal impact on control of LLMs; and (3) struggle with handling the inherent complexity of certain constraints (e.g., compound words). To address these issues, we introduce a Divide and Conquer Generation strategy, effective for both white-box and black-box LLMs, to enhance LLMs performance in LCG tasks, which demonstrates over 90% improvement on success rate in the most challenging LCG task. Our analysis provides valuable insights into the performance of LLMs in LCG with prompt-based control, and our proposed strategy offers a pathway to more sophisticated and customized text generation applications.
- Abstract(参考訳): 本稿では,Lexically Constrained Generation(LCG)に着目し,大規模言語モデル(LLM)のプロンプトベース制御による制御可能生成について検討する。
我々は,レキシカル制約を満たすためのLLMの性能を,プロンプトベース制御により体系的に評価し,下流アプリケーションでの有効性を検証した。
我々は、LLMは、プロンプトベース制御による語彙制約を一貫して満たす上で、重大な課題に直面していると結論付けた。
1) LLMが入力内の特定の位置に現れる制約を満たす傾向にある位置バイアス,(2) LLMの制御に最小限の影響を与えるデコードパラメータに対する応答性が低いこと,(3) 特定の制約(複合語など)の固有の複雑さに対処する上での苦労など,LCGにおけるLCMの3つの重要な制限を特定した。
これらの課題に対処するため、白箱と黒箱のLCMに有効である除算・分数生成戦略を導入し、LCGタスクにおけるLCMの性能を向上させるとともに、最も困難なLCGタスクにおいて、90%以上の成功率の向上を示す。
提案手法は,LCGにおけるLCMの性能に関する貴重な知見を即時制御で提供し,より高度でカスタマイズされたテキスト生成アプリケーションへの経路を提供する。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Systematic Evaluation of Long-Context LLMs on Financial Concepts [4.299993837670688]
LC LLMの最先端GPT-4スイートの性能評価を行い,課題を段階的に解決する方法について検討した。
LC LLMは, 簡単な作業であっても, より長いコンテキスト長で脆性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-12-19T20:26:55Z) - Length Controlled Generation for Black-box LLMs [70.57649832433451]
大規模言語モデル (LLM) は印象的な命令に従う能力を示しているが、生成したテキストの長さを正確に管理することは困難である。
本稿では,Metropolis-Hastingsアルゴリズムと重要なサンプリング高速化戦略を組み合わせた,テキスト長制御のための新しい反復サンプリングフレームワークを提案する。
このフレームワークは,Llama3.1における長さ制御の抽象的要約などのタスクに対して,ほぼ100%の成功率を達成する。
論文 参考訳(メタデータ) (2024-12-19T09:07:38Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なアプリケーションで顕著なパフォーマンスのために広く採用されている。
これらの個々のLCMは、固有のトレーニングバイアス、モデルサイズ制約、トレーニング前のデータセットの品質や多様性による、複雑なタスクの一般化とパフォーマンスの制限を示す。
本稿では,入力クエリをLLMの最も適切なサブセットに効率的に誘導するSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBenchは、大規模言語モデルのベンチマークに続くきめ細かい制約のベンチマークである。
本稿では,初期命令に段階的に1つの制約を付加するマルチレベル機構を提案する。
FollowBench上での13のLLMの評価により,LLMの弱さと今後の研究への道のりを示す。
論文 参考訳(メタデータ) (2023-10-31T12:32:38Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。