Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis
- URL: http://arxiv.org/abs/2410.04703v1
- Date: Mon, 7 Oct 2024 02:39:55 GMT
- Title: Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis
- Authors: Minjung Kim, Yusuke Hioka, Michael Witbrock,
- Abstract summary: We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis.
NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, and (ii) the capacity for data manipulation within the Fourier domain.
NFM achieves state-of-the-art performance on a wide range of tasks, including challenging time-series scenarios with previously unseen sampling rates at test time.
- Score: 9.969451740838418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural time-series analysis has traditionally focused on modeling data in the time domain, often with some approaches incorporating equivalent Fourier domain representations as auxiliary spectral features. In this work, we shift the main focus to frequency representations, modeling time-series data fully and directly in the Fourier domain. We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis. NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, treating them as continuous-time elements in function space, and (ii) the capacity for data manipulation (such as resampling and timespan extension) within the Fourier domain. We reinterpret Fourier-domain data manipulation as frequency extrapolation and interpolation, incorporating this as a core learning mechanism in NFM, applicable across various tasks. To support flexible frequency extension with spectral priors and effective modulation of frequency representations, we propose two learning modules: Learnable Frequency Tokens (LFT) and Implicit Neural Fourier Filters (INFF). These modules enable compact and expressive modeling in the Fourier domain. Extensive experiments demonstrate that NFM achieves state-of-the-art performance on a wide range of tasks (forecasting, anomaly detection, and classification), including challenging time-series scenarios with previously unseen sampling rates at test time. Moreover, NFM is highly compact, requiring fewer than 40K parameters in each task, with time-series lengths ranging from 100 to 16K.
Related papers
- ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNet is an innovative framework that combines a time domain module and a frequency domain module.
We introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for adjusting the weights between the two modules.
Our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations.
arXiv Detail & Related papers (2024-04-08T04:41:39Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
We present a new family of algorithms for learning Fourier-sparse set functions.
In contrast to other work that focused on the Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms.
We demonstrate effectiveness on several real-world applications.
arXiv Detail & Related papers (2020-10-01T14:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.