論文の概要: Molecular topological deep learning for polymer property prediction
- arxiv url: http://arxiv.org/abs/2410.04765v1
- Date: Mon, 7 Oct 2024 05:44:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 02:07:46.520233
- Title: Molecular topological deep learning for polymer property prediction
- Title(参考訳): 高分子物性予測のための分子トポロジカル深層学習
- Authors: Cong Shen, Yipeng Zhang, Fei Han, Kelin Xia,
- Abstract要約: 高分子特性解析のための分子トポロジカルディープラーニング(Mol-TDL)を開発した。
Mol-TDLは高次相互作用とマルチスケール特性の両方をトポロジカルディープラーニングアーキテクチャに組み込んでいる。
- 参考スコア(独自算出の注目度): 18.602659324026934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient prediction of polymer properties is of key importance for polymer design. Traditional experimental tools and density function theory (DFT)-based simulations for polymer property evaluation, are both expensive and time-consuming. Recently, a gigantic amount of graph-based molecular models have emerged and demonstrated huge potential in molecular data analysis. Even with the great progresses, these models tend to ignore the high-order and mutliscale information within the data. In this paper, we develop molecular topological deep learning (Mol-TDL) for polymer property analysis. Our Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture. The key idea is to represent polymer molecules as a series of simplicial complices at different scales and build up simplical neural networks accordingly. The aggregated information from different scales provides a more accurate prediction of polymer molecular properties.
- Abstract(参考訳): ポリマー特性の高精度かつ効率的な予測は、高分子設計において重要な要素である。
高分子特性評価のための従来の実験ツールと密度関数理論(DFT)に基づくシミュレーションは高価かつ時間を要する。
近年, グラフに基づく分子モデルが大量に出現し, 分子データ解析において大きな可能性を実証している。
大きな進歩にもかかわらず、これらのモデルはデータ内の高次および多変量情報を無視する傾向にある。
本稿では,高分子物性解析のための分子トポロジカルディープラーニング(Mol-TDL)を開発した。
我々のMoll-TDLは、高次相互作用とマルチスケール特性の両方をトポロジ的深層学習アーキテクチャに組み込んでいる。
鍵となるアイデアは、高分子分子を異なるスケールの単純なコンプレックスのシリーズとして表現し、それに応じて単純化されたニューラルネットワークを構築することである。
異なるスケールからの集約された情報は、より正確なポリマー分子特性の予測を提供する。
関連論文リスト
- Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Multiresolution Graph Transformers and Wavelet Positional Encoding for
Learning Hierarchical Structures [6.875312133832078]
複数のスケールで大きな分子を表現できる最初のグラフトランスアーキテクチャであるMulti resolution Graph Transformer (MGT)を提案する。
MGTは原子の表現を学習し、それらを有意義な官能基または繰り返し単位に分類することができる。
提案モデルでは, 高分子とペプチドからなるマクロ分子データセットと, 薬物様分子データセットの2つの結果を得た。
論文 参考訳(メタデータ) (2023-02-17T01:32:44Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - TransPolymer: a Transformer-based language model for polymer property
predictions [9.04563945965023]
TransPolymerは、トランスフォーマーをベースとした、高分子特性予測のための言語モデルである。
ケミカル・アウェアネスを用いたポリマー・トークンーザは, ポリマー配列からの学習表現を可能にする。
論文 参考訳(メタデータ) (2022-09-03T01:29:59Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Representing Polymers as Periodic Graphs with Learned Descriptors for
Accurate Polymer Property Predictions [16.468017785818198]
我々は、手書きの表現を一貫して上回る周期性ポリマーグラフ表現を開発する。
また,高分子グラフ表現とメッセージパッシングニューラルネットワークアーキテクチャを組み合わせることで,意味のある高分子の特徴を自動的に抽出する方法を実証する。
論文 参考訳(メタデータ) (2022-05-27T04:14:12Z) - A graph representation of molecular ensembles for polymer property
prediction [3.032184156362992]
有機分子とは対照的に、ポリマーはよく定義された単一構造ではなく、類似した分子の集合体である。
本稿では,分子アンサンブルのグラフ表現と,高分子特性予測に適したグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-17T20:31:43Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Copolymer Informatics with Multi-Task Deep Neural Networks [0.0]
コポリマーの性質予測の課題に取り組み、ホモポリマーを超えてポリマーインフォマティクスフレームワークを拡張します。
2つのモノマーのホモポリマーと共重合体のガラス転移、融解、分解温度の18,000以上のデータポイントを含む大きなデータセットを用いる。
開発されたモデルは、適切なデータが利用可能になったときに、よりコポリマー特性に正確、迅速、柔軟、スケーラブルです。
論文 参考訳(メタデータ) (2021-03-25T23:28:20Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。