論文の概要: Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation
- arxiv url: http://arxiv.org/abs/2410.04855v1
- Date: Mon, 7 Oct 2024 09:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 01:38:08.326568
- Title: Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation
- Title(参考訳): 自動タスク生成によるロボットマニピュレーションのための教師なしスキル発見
- Authors: Paul Jansonnie, Bingbing Wu, Julien Perez, Jan Peters,
- Abstract要約: 本稿では,多数の自律的タスクを解くことで構成可能な振る舞いを発見するスキル学習手法を提案する。
本手法は,ロボットが環境内の物体と連続的かつ堅牢に対話することを可能にするスキルを学習する。
学習したスキルは、シミュレーションだけでなく、本物のロボットプラットフォーム上でも、目に見えない操作タスクのセットを解決するために使用できる。
- 参考スコア(独自算出の注目度): 17.222197596599685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning skills that interact with objects is of major importance for robotic manipulation. These skills can indeed serve as an efficient prior for solving various manipulation tasks. We propose a novel Skill Learning approach that discovers composable behaviors by solving a large and diverse number of autonomously generated tasks. Our method learns skills allowing the robot to consistently and robustly interact with objects in its environment. The discovered behaviors are embedded in primitives which can be composed with Hierarchical Reinforcement Learning to solve unseen manipulation tasks. In particular, we leverage Asymmetric Self-Play to discover behaviors and Multiplicative Compositional Policies to embed them. We compare our method to Skill Learning baselines and find that our skills are more interactive. Furthermore, the learned skills can be used to solve a set of unseen manipulation tasks, in simulation as well as on a real robotic platform.
- Abstract(参考訳): オブジェクトと対話する学習スキルは、ロボット操作において重要である。
これらのスキルは、様々な操作タスクを解決するための、効果的な事前処理として機能する。
本稿では,多種多様な自律的タスクを解くことで,構成可能な振る舞いを発見する新しいスキル学習手法を提案する。
本手法は,ロボットが環境内の物体と連続的かつ堅牢に対話することを可能にするスキルを学習する。
発見された振る舞いは、階層的強化学習(Hierarchical Reinforcement Learning)と組み合わせて、目に見えない操作タスクを解決するプリミティブに埋め込まれる。
特に、非対称なセルフプレイを活用して行動を発見し、それらを組み込むための乗法的構成法を考案する。
我々は,本手法をスキル学習のベースラインと比較し,スキルがよりインタラクティブであることを確認する。
さらに、学習したスキルは、シミュレーションだけでなく、本物のロボットプラットフォーム上でも、目に見えない操作タスクのセットを解決するために使用することができる。
関連論文リスト
- SLIM: Skill Learning with Multiple Critics [8.645929825516818]
自己指導型スキル学習は、環境の基盤となるダイナミクスを活用する有用な行動を取得することを目的としている。
相互情報に基づく潜在変数モデルは、このタスクでは成功したが、ロボット操作の文脈では依然として苦戦している。
SLIMは,ロボット操作に特化して,スキル発見のための多批判学習手法である。
論文 参考訳(メタデータ) (2024-02-01T18:07:33Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - ManiSkill: Learning-from-Demonstrations Benchmark for Generalizable
Manipulation Skills [27.214053107733186]
汎用オブジェクト操作スキルを学習するためのSAPIENマニピュレーションスキルベンチマーク(ManiSkill)を提案する。
ManiSkillは、リッチで多様な調音されたオブジェクトセットを利用することで、オブジェクトレベルのバリエーションをサポートする。
ManiSkillは、ロボットの学習コミュニティに、汎用的なオブジェクト操作スキルの学習を奨励する。
論文 参考訳(メタデータ) (2021-07-30T08:20:22Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
本稿では,多種多様なタスクの自動生成による一般化可能なスキルの発見手法を提案する。
教師なしスキル発見の先行研究とは対照的に,本手法では各スキルをトレーニング可能なタスクジェネレータが生成するユニークなタスクとペアリングする。
生成したタスクにおけるロボットの動作に定義されたタスク判別器を共同で訓練し、多様性目標の低いエビデンスを推定する。
学習スキルは階層的な強化学習アルゴリズムで構成され、目に見えない目標タスクを解決する。
論文 参考訳(メタデータ) (2021-06-26T03:41:51Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
本研究では,移動ロボットの価格学習を支援するために,本質的なモチベーションを用いたアルゴリズムを提案する。
このアルゴリズムは、事前にプログラムされたアクションなしで、相互に関連のある価格を自律的に発見し、学習し、適応することができる。
一度学習すると、これらの余裕はアルゴリズムによって様々な困難を伴うタスクを実行するために一連のアクションを計画するために使われる。
論文 参考訳(メタデータ) (2020-09-23T07:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。