Art Forgery Detection using Kolmogorov Arnold and Convolutional Neural Networks
- URL: http://arxiv.org/abs/2410.04866v1
- Date: Mon, 7 Oct 2024 09:32:11 GMT
- Title: Art Forgery Detection using Kolmogorov Arnold and Convolutional Neural Networks
- Authors: Sandro Boccuzzo, Deborah Desirée Meyer, Ludovica Schaerf,
- Abstract summary: We leverage the growing improvements in AI to present an art authentication framework.
We focus on a specialized model of a forger, rather than an artist, flipping the approach of traditional AI methods.
We compare the results with Kolmogorov Arnold Networks (KAN) which, to the best of our knowledge, have never been tested in the art domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Art authentication has historically established itself as a task requiring profound connoisseurship of one particular artist. Nevertheless, famous art forgers such as Wolfgang Beltracchi were able to deceive dozens of art experts. In recent years Artificial Intelligence algorithms have been successfully applied to various image processing tasks. In this work, we leverage the growing improvements in AI to present an art authentication framework for the identification of the forger Wolfgang Beltracchi. Differently from existing literature on AI-aided art authentication, we focus on a specialized model of a forger, rather than an artist, flipping the approach of traditional AI methods. We use a carefully compiled dataset of known artists forged by Beltracchi and a set of known works by the forger to train a multiclass image classification model based on EfficientNet. We compare the results with Kolmogorov Arnold Networks (KAN) which, to the best of our knowledge, have never been tested in the art domain. The results show a general agreement between the different models' predictions on artworks flagged as forgeries, which are then closely studied using visual analysis.
Related papers
- GalleryGPT: Analyzing Paintings with Large Multimodal Models [64.98398357569765]
Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability.
Previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI.
We introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture.
arXiv Detail & Related papers (2024-08-01T11:52:56Z) - Deep Ensemble Art Style Recognition [2.3369294168789203]
Huge digitization of artworks during the last decades created the need for categorization, analysis, and management of huge amounts of data related to abstract concepts.
Recognition of various art features in artworks has gained attention in the deep learning society.
In this paper, we are concerned with the problem of art style recognition using deep networks.
arXiv Detail & Related papers (2024-05-19T21:26:11Z) - AI Art Neural Constellation: Revealing the Collective and Contrastive
State of AI-Generated and Human Art [36.21731898719347]
We conduct a comprehensive analysis to position AI-generated art within the context of human art heritage.
Our comparative analysis is based on an extensive dataset, dubbed ArtConstellation''
Key finding is that AI-generated artworks are visually related to the principle concepts for modern period art made in 1800-2000.
arXiv Detail & Related papers (2024-02-04T11:49:51Z) - Interactive Neural Painting [66.9376011879115]
This paper proposes the first approach for Interactive Neural Painting (NP)
We propose I-Paint, a novel method based on a conditional transformer Variational AutoEncoder (VAE) architecture with a two-stage decoder.
Our experiments show that our approach provides good stroke suggestions and compares favorably to the state of the art.
arXiv Detail & Related papers (2023-07-31T07:02:00Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
ArtScore is a metric designed to evaluate the degree to which an image resembles authentic artworks by artists.
We employ pre-trained models for photo and artwork generation, resulting in a series of mixed models.
This dataset is then employed to train a neural network that learns to estimate quantized artness levels of arbitrary images.
arXiv Detail & Related papers (2023-05-08T17:58:27Z) - Synergy of Machine and Deep Learning Models for Multi-Painter
Recognition [0.0]
We introduce a new large dataset for painting recognition task including 62 artists achieving good results.
RegNet performs better in exporting features, while SVM makes the best classification of images based on the painter with a performance of up to 85%.
arXiv Detail & Related papers (2023-04-28T11:34:53Z) - Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and
a New Method [64.40494830113286]
We first introduce a large-scale AIAA dataset: Boldbrush Artistic Image dataset (BAID), which consists of 60,337 artistic images covering various art forms.
We then propose a new method, SAAN, which can effectively extract and utilize style-specific and generic aesthetic information to evaluate artistic images.
Experiments demonstrate that our proposed approach outperforms existing IAA methods on the proposed BAID dataset.
arXiv Detail & Related papers (2023-03-27T12:59:15Z) - CtlGAN: Few-shot Artistic Portraits Generation with Contrastive Transfer
Learning [77.27821665339492]
CtlGAN is a new few-shot artistic portraits generation model with a novel contrastive transfer learning strategy.
We adapt a pretrained StyleGAN in the source domain to a target artistic domain with no more than 10 artistic faces.
We propose a new encoder which embeds real faces into Z+ space and proposes a dual-path training strategy to better cope with the adapted decoder.
arXiv Detail & Related papers (2022-03-16T13:28:17Z) - The Curious Layperson: Fine-Grained Image Recognition without Expert
Labels [90.88501867321573]
We consider a new problem: fine-grained image recognition without expert annotations.
We learn a model to describe the visual appearance of objects using non-expert image descriptions.
We then train a fine-grained textual similarity model that matches image descriptions with documents on a sentence-level basis.
arXiv Detail & Related papers (2021-11-05T17:58:37Z) - Quantifying Confounding Bias in Generative Art: A Case Study [3.198144010381572]
We propose a simple metric to quantify confounding bias due to the lack of modeling the influence of art movements in learning artists' styles.
The proposed metric is more effective than state-of-the-art outlier detection method in understanding the influence of art movements in artworks.
arXiv Detail & Related papers (2021-02-23T21:59:30Z) - Biases in Generative Art -- A Causal Look from the Lens of Art History [3.198144010381572]
We investigate biases in the generative art AI pipeline from those that can originate due to improper problem formulation to those related to algorithm design.
We highlight how current methods fall short in modeling the process of art creation and thus contribute to various types of biases.
arXiv Detail & Related papers (2020-10-26T00:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.