Improved detection of discarded fish species through BoxAL active learning
- URL: http://arxiv.org/abs/2410.04880v1
- Date: Mon, 7 Oct 2024 10:01:30 GMT
- Title: Improved detection of discarded fish species through BoxAL active learning
- Authors: Maria Sokolova, Pieter M. Blok, Angelo Mencarelli, Arjan Vroegop, Aloysius van Helmond, Gert Kootstra,
- Abstract summary: In this study, we present an active learning technique, named BoxAL, which includes estimation of epistemic certainty of the Faster R-CNN object-detection model.
The method allows selecting the most uncertain training images from an unlabeled pool, which are then used to train the object-detection model.
Our study additionally showed that the sampled new data is more valuable for training than the remaining unlabeled data.
- Score: 0.2544632696242629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, powerful data-driven deep-learning techniques have been developed and applied for automated catch registration. However, these methods are dependent on the labelled data, which is time-consuming, labour-intensive, expensive to collect and need expert knowledge. In this study, we present an active learning technique, named BoxAL, which includes estimation of epistemic certainty of the Faster R-CNN object-detection model. The method allows selecting the most uncertain training images from an unlabeled pool, which are then used to train the object-detection model. To evaluate the method, we used an open-source image dataset obtained with a dedicated image-acquisition system developed for commercial trawlers targeting demersal species. We demonstrated, that our approach allows reaching the same object-detection performance as with the random sampling using 400 fewer labelled images. Besides, mean AP score was significantly higher at the last training iteration with 1100 training images, specifically, 39.0±1.6 and 34.8±1.8 for certainty-based sampling and random sampling, respectively. Additionally, we showed that epistemic certainty is a suitable method to sample images that the current iteration of the model cannot deal with yet. Our study additionally showed that the sampled new data is more valuable for training than the remaining unlabeled data. Our software is available on https://github.com/pieterblok/boxal.
Related papers
- CPSample: Classifier Protected Sampling for Guarding Training Data During Diffusion [58.64822817224639]
Diffusion models have a tendency to exactly replicate their training data, especially when trained on small datasets.
We present CPSample, a method that modifies the sampling process to prevent training data replication while preserving image quality.
CPSample achieves FID scores of 4.97 and 2.97 on CIFAR-10 and CelebA-64, respectively, without producing exact replicates of the training data.
arXiv Detail & Related papers (2024-09-11T05:42:01Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Image Outlier Detection Without Training using RANSAC [0.2302001830524133]
We present a novel image outlier detection (OD) algorithm called RANSAC-NN.
Unlike existing approaches, RANSAC-NN can be directly applied on datasets containing outliers by sampling and comparing subsets of the data.
Our algorithm maintains favorable performance compared to existing methods on a range of benchmarks.
arXiv Detail & Related papers (2023-07-23T11:50:27Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - KNN-Diffusion: Image Generation via Large-Scale Retrieval [40.6656651653888]
Learning to adapt enables several new capabilities.
Fine-tuning trained models to new samples can be achieved by simply adding them to the table.
Our diffusion-based model trains on images only, by leveraging a joint Text-Image multi-modal metric.
arXiv Detail & Related papers (2022-04-06T14:13:35Z) - Active Learning for Deep Visual Tracking [51.5063680734122]
Convolutional neural networks (CNNs) have been successfully applied to the single target tracking task in recent years.
In this paper, we propose an active learning method for deep visual tracking, which selects and annotates the unlabeled samples to train the deep CNNs model.
Under the guidance of active learning, the tracker based on the trained deep CNNs model can achieve competitive tracking performance while reducing the labeling cost.
arXiv Detail & Related papers (2021-10-17T11:47:56Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - DEAL: Deep Evidential Active Learning for Image Classification [0.0]
Active Learning (AL) is one approach to mitigate the problem of limited labeled data.
Recent AL methods for CNNs propose different solutions for the selection of instances to be labeled.
We propose a novel AL algorithm that efficiently learns from unlabeled data by capturing high prediction uncertainty.
arXiv Detail & Related papers (2020-07-22T11:14:23Z) - Temperate Fish Detection and Classification: a Deep Learning based
Approach [6.282069822653608]
We propose a two-step deep learning approach for the detection and classification of temperate fishes without pre-filtering.
The first step is to detect each single fish in an image, independent of species and sex.
In the second step, we adopt a Convolutional Neural Network (CNN) with the Squeeze-and-Excitation (SE) architecture for classifying each fish in the image without pre-filtering.
arXiv Detail & Related papers (2020-05-14T12:40:57Z) - Radioactive data: tracing through training [130.2266320167683]
We propose a new technique, emphradioactive data, that makes imperceptible changes to this dataset such that any model trained on it will bear an identifiable mark.
Given a trained model, our technique detects the use of radioactive data and provides a level of confidence (p-value)
Our method is robust to data augmentation and backdoority of deep network optimization.
arXiv Detail & Related papers (2020-02-03T18:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.