KNN-Diffusion: Image Generation via Large-Scale Retrieval
- URL: http://arxiv.org/abs/2204.02849v1
- Date: Wed, 6 Apr 2022 14:13:35 GMT
- Title: KNN-Diffusion: Image Generation via Large-Scale Retrieval
- Authors: Oron Ashual, Shelly Sheynin, Adam Polyak, Uriel Singer, Oran Gafni,
Eliya Nachmani, Yaniv Taigman
- Abstract summary: Learning to adapt enables several new capabilities.
Fine-tuning trained models to new samples can be achieved by simply adding them to the table.
Our diffusion-based model trains on images only, by leveraging a joint Text-Image multi-modal metric.
- Score: 40.6656651653888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the availability of massive Text-Image datasets is shown to be
extremely useful in training large-scale generative models (e.g. DDPMs,
Transformers), their output typically depends on the quality of both the input
text, as well as the training dataset. In this work, we show how large-scale
retrieval methods, in particular efficient K-Nearest-Neighbors (KNN) search,
can be used in order to train a model to adapt to new samples. Learning to
adapt enables several new capabilities. Sifting through billions of records at
inference time is extremely efficient and can alleviate the need to train or
memorize an adequately large generative model. Additionally, fine-tuning
trained models to new samples can be achieved by simply adding them to the
table. Rare concepts, even without any presence in the training set, can be
then leveraged during test time without any modification to the generative
model. Our diffusion-based model trains on images only, by leveraging a joint
Text-Image multi-modal metric. Compared to baseline methods, our generations
achieve state of the art results both in human evaluations as well as with
perceptual scores when tested on a public multimodal dataset of natural images,
as well as on a collected dataset of 400 million Stickers.
Related papers
- Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition [0.19183348587701113]
Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning.
Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition.
arXiv Detail & Related papers (2024-04-26T08:47:28Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - FSL-Rectifier: Rectify Outliers in Few-Shot Learning via Test-Time Augmentation [7.477118370563593]
Few-shot-learning (FSL) commonly requires a model to identify images (queries) that belong to classes unseen during training.
We generate additional test-class samples by combining original samples with suitable train-class samples via a generative image combiner.
We obtain averaged features via an augmentor, which leads to more typical representations through the averaging.
arXiv Detail & Related papers (2024-02-28T12:37:30Z) - Masked Diffusion Models Are Fast Distribution Learners [32.485235866596064]
Diffusion models are commonly trained to learn all fine-grained visual information from scratch.
We show that it suffices to train a strong diffusion model by first pre-training the model to learn some primer distribution.
Then the pre-trained model can be fine-tuned for various generation tasks efficiently.
arXiv Detail & Related papers (2023-06-20T08:02:59Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - DINOv2: Learning Robust Visual Features without Supervision [75.42921276202522]
This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources.
Most of the technical contributions aim at accelerating and stabilizing the training at scale.
In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature.
arXiv Detail & Related papers (2023-04-14T15:12:19Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Lafite2: Few-shot Text-to-Image Generation [132.14211027057766]
We propose a novel method for pre-training text-to-image generation model on image-only datasets.
It considers a retrieval-then-optimization procedure to synthesize pseudo text features.
It can be beneficial to a wide range of settings, including the few-shot, semi-supervised and fully-supervised learning.
arXiv Detail & Related papers (2022-10-25T16:22:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.