Harnessing individual nitrogen-vacancy centers with a compact and portable confocal microscope
- URL: http://arxiv.org/abs/2410.04942v1
- Date: Mon, 7 Oct 2024 11:35:46 GMT
- Title: Harnessing individual nitrogen-vacancy centers with a compact and portable confocal microscope
- Authors: Ivan Panadero, Jose Carlos Guerra, Eva Caravaca, Fernando Julio Hidalgo, Pablo Acedo, Cristina de Dios, Erik Torrontegui,
- Abstract summary: Recent advancements in quantum technology have highlighted the potential of nitrogen-vacancy (NV) centers in diamond.
We present a compact and portable confocal setup specifically designed for the efficient detection and control of single NV centers.
- Score: 36.136619420474766
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in quantum technology have highlighted the potential of nitrogen-vacancy (NV) centers in diamond. However, fully realizing this potential requires addressing challenges related to the size, complexity, and cost of current optical systems used for NV center manipulation. In this work, we present a compact and portable confocal setup specifically designed for the efficient detection and control of single NV centers. Our system facilitates optical initialization and readout of individual NV center photoluminescence signals, enabling coherent spin control and nanoscale-resolution magnetic field sensing.
Related papers
- Massively multiplexed nanoscale magnetometry with diamond quantum sensors [0.14277663283573688]
Single nitrogen vacancy (NV) centers in diamond have been used extensively for nanoscale sensing.
We design and implement a multiplexed NV sensing platform that allows us to read out many single NV centers simultaneously.
arXiv Detail & Related papers (2024-08-21T14:39:28Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Preparing highly entangled states of nanodiamond rotation and NV center
spin [0.913755431537592]
A nanodiamond with an embedded nitrogen-vacancy (NV) center is one of the experimental systems that can be coherently manipulated within current technologies.
Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a network connecting these microscopic and mesoscopic motions.
arXiv Detail & Related papers (2023-05-13T21:17:14Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Microfluidic quantum sensing platform for lab-on-a-chip applications [0.0]
We present a fully integrated microfluidic platform for solid-state spin quantum sensors, such as the nitrogen-vacancy center in diamond.
Our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
arXiv Detail & Related papers (2022-09-04T16:01:56Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy
Centers Coupled to a Fabry-P\'{e}rot Micro-Cavity [0.0]
nitrogen-vacancy (NV) center in diamond has been established as a prime building block for quantum networks.
Poor optical coherence of near-surface NV centers has so far prevented their resonant optical control, as would be required for entanglement generation.
We demonstrate resonant addressing of individual, fiber-cavity-coupled NV centers, and collection of their Purcell-enhanced coherent photon emission.
arXiv Detail & Related papers (2020-09-17T10:48:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.