Chiral symmetry breaking and topological charge of graphene nanoribbons
- URL: http://arxiv.org/abs/2312.05487v3
- Date: Fri, 22 Mar 2024 12:54:23 GMT
- Title: Chiral symmetry breaking and topological charge of graphene nanoribbons
- Authors: Hyun Cheol Lee, S. -R. Eric Yang,
- Abstract summary: We explore the edge zigzag properties of rectangular graphene nanoribbons featuring two edges and two armchair edges.
Although the self-consistent Hartree-Fock fields break chiral symmetry, our work demonstrates that graphene nanoribbons maintain their status as short-range entangled symmetry-protected topological insulators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the edge properties of rectangular graphene nanoribbons featuring two zigzag edges and two armchair edges. Although the self-consistent Hartree-Fock fields break chiral symmetry, our work demonstrates that graphene nanoribbons maintain their status as short-range entangled symmetry-protected topological insulators. The relevant symmetry involves combined mirror and time-reversal operations. In undoped ribbons displaying edge ferromagnetism, the band gap edge states with a topological charge form on the zigzag edges. An analysis of the anomalous continuity equation elucidates that this topological charge is induced by the gap term. In low-doped zigzag ribbons, where the ground state exhibits edge spin density waves, this topological charge appears as a nearly zero-energy edge mode. Our system is outside the conventional calssification for topological insulators.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Quasi-Majorana modes in the $p$-wave Kitaev chains on a square lattice [14.37149160708975]
The Kitaev chains on a square lattice with nearest-neighbor and next-nearest-neighbor inter-chains hopping and pairing are investigated.
This model exhibits topological gapless phase hosting edge modes, which do not reside strictly at zero energy.
The emergence of topological edge states and Dirac points with zero Chern number indicates that this model is a weak topological superconductor.
arXiv Detail & Related papers (2024-10-07T11:54:51Z) - Shaping the topology of twisted bilayer graphene via time-reversal symmetry breaking [0.0]
We utilize time-reversal symmetry breaking to manipulate the topological properties of twisted bilayer graphene (TBG)
By varying the strength of TRSB, we discover a topological phase transition between a topological insulating phase, which exhibits a pair of flat bands with opposite Chern numbers.
We show that this novel electronic phase can be identified in the lab by measuring, as a function of the Fermi energy, its non-quantized anomalous Hall conductivity.
arXiv Detail & Related papers (2024-06-05T05:14:28Z) - Topology-induced symmetry breaking: a demonstration in antiferromagnetic magnons on a Möbius strip [8.937248059172983]
We propose a mechanism of topology-induced symmetry breaking, where certain local symmetry preserved by the Hamiltonian is broken in the excited eigenstates due to the nontrivial boundary condition.
As a demonstration, we study magnon excitations on a M"obius strip comprising of two antiferromagnetically coupled spin chains.
arXiv Detail & Related papers (2024-03-12T17:38:14Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Multiple polaritonic edge states in a Su-Schrieffer-Heeger chain
strongly coupled to a multimode cavity [0.0]
Dipolar emitters strongly coupled to a multimode optical waveguide cavity are studied.
In the strong-coupling regime, the cavity photons hybridize the bright dipolar bulk band into a polaritonic one.
We find that bulk polaritons entering in resonance with the edge states inherit part of their localization properties.
arXiv Detail & Related papers (2023-05-11T16:31:24Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Robust nonequilibrium edge currents with and without band topology [0.0]
Chirality of the edge currents implies that energy locally flows against the temperature gradient without any external work input.
In the fermionic case, there is also a regime with topologically protected boundary currents, which nonetheless do not circulate around all system edges.
arXiv Detail & Related papers (2021-06-10T18:02:58Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.