論文の概要: Explanation sensitivity to the randomness of large language models: the case of journalistic text classification
- arxiv url: http://arxiv.org/abs/2410.05085v1
- Date: Mon, 7 Oct 2024 14:39:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 00:28:18.652572
- Title: Explanation sensitivity to the randomness of large language models: the case of journalistic text classification
- Title(参考訳): 大規模言語モデルのランダム性に対する説明感度--ジャーナリズムテキスト分類の場合
- Authors: Jeremie Bogaert, Marie-Catherine de Marneffe, Antonin Descampe, Louis Escouflaire, Cedrick Fairon, Francois-Xavier Standaert,
- Abstract要約: 本研究では,大規模言語モデルの学習におけるランダム要素の影響について,その予測可能性について検討する。
微調整のCamemBERTモデルと、関連性伝播に基づく説明手法を用いて、異なるランダムシードを用いたトレーニングは、類似の精度であるが可変的な説明を伴うモデルを生成する。
- 参考スコア(独自算出の注目度): 6.240875403446504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) perform very well in several natural language processing tasks but raise explainability challenges. In this paper, we examine the effect of random elements in the training of LLMs on the explainability of their predictions. We do so on a task of opinionated journalistic text classification in French. Using a fine-tuned CamemBERT model and an explanation method based on relevance propagation, we find that training with different random seeds produces models with similar accuracy but variable explanations. We therefore claim that characterizing the explanations' statistical distribution is needed for the explainability of LLMs. We then explore a simpler model based on textual features which offers stable explanations but is less accurate. Hence, this simpler model corresponds to a different tradeoff between accuracy and explainability. We show that it can be improved by inserting features derived from CamemBERT's explanations. We finally discuss new research directions suggested by our results, in particular regarding the origin of the sensitivity observed in the training randomness.
- Abstract(参考訳): 大規模言語モデル(LLM)は、いくつかの自然言語処理タスクで非常によく機能するが、説明可能性の問題を引き起こす。
本稿では,LLMの学習におけるランダム要素の影響について,その予測可能性について検討する。
私たちはフランス語で意見のあるジャーナリストのテキスト分類のタスクでそうします。
微調整のCamemBERTモデルと、関連性伝播に基づく説明手法を用いて、異なるランダムシードを用いたトレーニングは、類似の精度であるが可変的な説明を伴うモデルを生成する。
したがって, LLM の説明可能性には, 説明の統計的分布を特徴付ける必要がある。
次に、安定な説明を提供するが精度が低いテキスト機能に基づくより単純なモデルについて検討する。
したがって、この単純なモデルは精度と説明可能性の異なるトレードオフに対応する。
CamemBERTの説明から派生した機能を挿入することで改善可能であることを示す。
結果から示唆される新たな研究方向,特にトレーニングランダムネスで観測された感度の起源について論じる。
関連論文リスト
- Pruning Literals for Highly Efficient Explainability at Word Level [13.249876381579158]
Tsetlin Machine(TM)は、命題論理を用いた単語レベルの説明を提供する能力があるので、有望である。
本稿では,文中にランダムに置かれるリテラルを排除した節のポストホックプルーニングを設計する。
一般公開されたYELP-HATデータセットの実験では、提案されたプルーンドTMのアテンションマップが、バニラTMのアテンションマップよりも人間のアテンションマップと一致していることが示されている。
論文 参考訳(メタデータ) (2024-11-07T09:28:38Z) - QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios [15.193544498311603]
本稿では,カテゴリー的確率変数と複雑な関係を持つ実世界のベイズ推論シナリオのデータセットであるQUITEを提案する。
我々は幅広い実験を行い、論理ベースのモデルが全ての推論型において、アウト・オブ・ボックスの大規模言語モデルより優れていることを発見した。
以上の結果から,ニューロシンボリックモデルが複雑な推論を改善する上で有望な方向であることを示す。
論文 参考訳(メタデータ) (2024-10-14T12:44:59Z) - Explaining word embeddings with perfect fidelity: Case study in research impact prediction [0.0]
単語埋め込みを訓練したロジスティック回帰に基づく分類モデルのための自己モデルRated Entities (SMER)。
SMERは,テキスト中の個々の単語の予測平均と正確に一致するので,理論上は説明モデルと完全に一致していることを示す。
論文 参考訳(メタデータ) (2024-09-24T09:28:24Z) - A Question on the Explainability of Large Language Models and the Word-Level Univariate First-Order Plausibility Assumption [4.824647351224233]
説明の信号、雑音、信号対雑音比について統計的に定義する。
次に、信号と雑音の代替定義を用いて、これらの結果を改善する可能性について議論する。
論文 参考訳(メタデータ) (2024-03-15T13:15:23Z) - Towards More Faithful Natural Language Explanation Using Multi-Level
Contrastive Learning in VQA [7.141288053123662]
視覚的質問応答(VQA-NLE)における自然言語の説明は,ブラックボックスシステムに対するユーザの信頼を高めるために,自然言語文を生成することによって,モデルの意思決定プロセスを説明することを目的としている。
既存のポストホックな説明は、人間の論理的推論と常に一致している訳ではなく、1) 誘惑的不満足な説明は、生成した説明が論理的に答えに繋がらないこと、2) 現実的不整合性、2) 画像上の事実を考慮せずに解答の反事実的説明を偽示すること、3) 意味的摂動の過敏性、モデルは、小さな摂動によって引き起こされる意味的変化を認識できないこと、である。
論文 参考訳(メタデータ) (2023-12-21T05:51:55Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。