Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability
- URL: http://arxiv.org/abs/2410.05117v1
- Date: Mon, 7 Oct 2024 15:14:58 GMT
- Title: Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability
- Authors: Fan Chen, Dylan J. Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, Yunbei Xu,
- Abstract summary: We develop a unified framework for lower bound methods in statistical estimation and interactive decision making.
We introduce a novel measure, decision dimension, which facilitates the complexity of new lower bounds for interactive decision making.
- Score: 71.82666334363174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop a unified framework for lower bound methods in statistical estimation and interactive decision making. Classical lower bound techniques -- such as Fano's inequality, Le Cam's method, and Assouad's lemma -- have been central to the study of minimax risk in statistical estimation, yet they are insufficient for the analysis of methods that collect data in an interactive manner. The recent minimax lower bounds for interactive decision making via the Decision-Estimation Coefficient (DEC) appear to be genuinely different from the classical methods. We propose a unified view of these distinct methodologies through a general algorithmic lower bound method. We further introduce a novel complexity measure, decision dimension, which facilitates the derivation of new lower bounds for interactive decision making. In particular, decision dimension provides a characterization of bandit learnability for any structured bandit model class. Further, we characterize the sample complexity of learning convex model class up to a polynomial gap with the decision dimension, addressing the remaining gap between upper and lower bounds in Foster et al. (2021, 2023).
Related papers
- Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Tight Guarantees for Interactive Decision Making with the
Decision-Estimation Coefficient [51.37720227675476]
We introduce a new variant of the Decision-Estimation Coefficient, and use it to derive new lower bounds that improve upon prior work on three fronts.
We provide upper bounds on regret that scale with the same quantity, thereby closing all but one of the gaps between upper and lower bounds in Foster et al.
Our results apply to both the regret framework and PAC framework, and make use of several new analysis and algorithm design techniques that we anticipate will find broader use.
arXiv Detail & Related papers (2023-01-19T18:24:08Z) - Model-Free Reinforcement Learning with the Decision-Estimation
Coefficient [79.30248422988409]
We consider the problem of interactive decision making, encompassing structured bandits and reinforcement learning with general function approximation.
We use this approach to derive regret bounds for model-free reinforcement learning with value function approximation, and give structural results showing when it can and cannot help more generally.
arXiv Detail & Related papers (2022-11-25T17:29:40Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
We provide a complexity measure, the Decision-Estimation Coefficient, that is proven to be both necessary and sufficient for sample-efficient interactive learning.
A unified algorithm design principle, Estimation-to-Decisions (E2D), transforms any algorithm for supervised estimation into an online algorithm for decision making.
arXiv Detail & Related papers (2021-12-27T02:53:44Z) - Optimal learning of high-dimensional classification problems using deep
neural networks [0.0]
We study the problem of learning classification functions from noiseless training samples, under the assumption that the decision boundary is of a certain regularity.
For the class of locally Barron-regular decision boundaries, we find that the optimal estimation rates are essentially independent of the underlying dimension.
arXiv Detail & Related papers (2021-12-23T14:15:10Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
We consider active learning for binary classification in the agnostic pool-based setting.
Our algorithm is superior to state of the art active learning algorithms on image classification datasets.
arXiv Detail & Related papers (2021-05-13T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.