論文の概要: VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks
- arxiv url: http://arxiv.org/abs/2410.05160v2
- Date: Fri, 11 Oct 2024 15:00:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 23:58:57.678843
- Title: VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks
- Title(参考訳): VLM2Vec:大規模マルチモーダル埋め込みタスクのためのビジョンランゲージモデルの訓練
- Authors: Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, Wenhu Chen,
- Abstract要約: 我々は、幅広い下流タスクを扱える普遍的な埋め込みモデルを構築している。
1 MMEB(Massive Multimodal Embedding Benchmark)は、4 つのメタタスク(分類、視覚的質問応答、マルチモーダル検索、視覚的グラウンド)と36 つのデータセット(20 のトレーニングと16 の評価データセットを含む)と、2 の VLM2Vec (Vision-Language Model -> Vector) を含む。
- 参考スコア(独自算出の注目度): 60.5257456681402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering. Recently, there has been a surge of interest in developing universal text embedding models that can generalize across tasks (e.g., MTEB). However, progress in learning universal multimodal embedding models has been relatively slow despite their importance. In this work, we aim to explore the potential for building universal embeddings capable of handling a wide range of downstream tasks. Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB. Unlike previous models such as CLIP and BLIP, VLM2Vec can process any combination of images and text to generate a fixed-dimensional vector based on task instructions. We build a series of VLM2Vec models on Phi-3.5-V and evaluate them on MMEB's evaluation split. Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models on both in-distribution and out-of-distribution datasets in MMEB.
- Abstract(参考訳): 埋め込みモデルは、セマンティックな類似性、情報検索、クラスタリングなど、さまざまな下流タスクを可能にする上で重要である。
近年,タスク(例えばMTEB)をまたいで一般化可能なユニバーサルテキスト埋め込みモデルの開発への関心が高まっている。
しかし, 汎用マルチモーダル埋め込みモデルの学習の進展は, その重要性にもかかわらず比較的遅かった。
本研究では,幅広い下流タスクを扱える普遍的な埋め込み構築の可能性を探究する。
1 MMEB(Massive Multimodal Embedding Benchmark)は、4 つのメタタスク(分類、視覚的質問応答、マルチモーダル検索、視覚的グラウンド)と36 つのデータセット(20 のトレーニングと16 の評価データセットを含む)と、2 の VLM2Vec (Vision-Language Model -> Vector) を含む。
CLIPやBLIPのような以前のモデルとは異なり、VLM2Vecは画像とテキストの組み合わせを処理してタスク命令に基づいた固定次元ベクトルを生成することができる。
我々は,Phi-3.5-V上に一連のVLM2Vecモデルを構築し,MMEBの評価分割に基づいて評価する。
以上の結果から,VLM2Vecは,MMEBにおける既存のマルチモーダル埋め込みモデルよりも10%から20%の絶対的な平均的改善を実現していることがわかった。
関連論文リスト
- NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities [17.374241865041856]
1つのモデルをトレーニングすることで、既存のモデルよりも少なくとも3倍多くのタスク/モダリティを解決し、パフォーマンスを損なうことなくそれを実行することが可能であることを示す。
数十のモダリティと異なるデータセットを使用して、トレーニングを30億のパラメータモデルに拡張することに成功しました。
得られたモデルとトレーニングコードは4m.epfl.chでオープンソース化されている。
論文 参考訳(メタデータ) (2024-06-13T17:59:42Z) - Instruction-Guided Visual Masking [25.26544571379426]
Instruction-guided Visual Masking (IVM) は多様なマルチモーダルモデルと互換性のある多目的な視覚的接地モデルである。
IVMを拡張したマルチモーダルモデルは、タスク関連の画像領域に効果的にフォーカスすることで、複雑な命令との整合性を向上することができる。
論文 参考訳(メタデータ) (2024-05-30T07:48:32Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffinフレームワークは、事前訓練された視覚言語モデルを使用して視覚信号のプロバイダとして機能する。
UniMM-Chatデータセットはデータセットの相補性を探求し、高品質で多様なマルチモーダル命令を生成する。
論文 参考訳(メタデータ) (2023-10-01T12:35:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiVizは、解釈可能性の問題を4段階に足場化することで、マルチモーダルモデルの振る舞いを分析する手法である。
MultiVizの相補的な段階は、モデル予測をシミュレートし、機能に解釈可能な概念を割り当て、モデル誤分類のエラー解析を行い、エラー解析からモデルデバッグへの洞察を利用することを可能にする。
論文 参考訳(メタデータ) (2022-06-30T18:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。