Deciphering the Interplay of Parametric and Non-parametric Memory in Retrieval-augmented Language Models
- URL: http://arxiv.org/abs/2410.05162v1
- Date: Mon, 7 Oct 2024 16:14:47 GMT
- Title: Deciphering the Interplay of Parametric and Non-parametric Memory in Retrieval-augmented Language Models
- Authors: Mehrdad Farahani, Richard Johansson,
- Abstract summary: Retrieval-Augmented Generation (RAG) models act like retrieving information before generating responses.
We use causal mediation analysis and controlled experiments to examine how internal representations influence information processing.
- Score: 5.274653527674298
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative language models often struggle with specialized or less-discussed knowledge. A potential solution is found in Retrieval-Augmented Generation (RAG) models which act like retrieving information before generating responses. In this study, we explore how the \textsc{Atlas} approach, a RAG model, decides between what it already knows (parametric) and what it retrieves (non-parametric). We use causal mediation analysis and controlled experiments to examine how internal representations influence information processing. Our findings disentangle the effects of parametric knowledge and the retrieved context. They indicate that in cases where the model can choose between both types of information (parametric and non-parametric), it relies more on the context than the parametric knowledge. Furthermore, the analysis investigates the computations involved in \emph{how} the model uses the information from the context. We find that multiple mechanisms are active within the model and can be detected with mediation analysis: first, the decision of \emph{whether the context is relevant}, and second, how the encoder computes output representations to support copying when relevant.
Related papers
- Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - From RAGs to rich parameters: Probing how language models utilize external knowledge over parametric information for factual queries [6.382667978271587]
Retrieval Augmented Generation (RAG) enriches the ability of language models to reason using external context to augment responses for a given user prompt.
This approach has risen in popularity due to practical applications in various applications of language models in search, question/answering, and chat-bots.
In this paper, we mechanistically examine the RAG pipeline to highlight that language models take shortcut and have a strong bias towards utilizing only the context information to answer the question, while relying minimally on their parametric memory.
arXiv Detail & Related papers (2024-06-18T17:46:08Z) - A Glitch in the Matrix? Locating and Detecting Language Model Grounding with Fakepedia [57.31074448586854]
Large language models (LLMs) have an impressive ability to draw on novel information supplied in their context.
Yet the mechanisms underlying this contextual grounding remain unknown.
We present a novel method to study grounding abilities using Fakepedia.
arXiv Detail & Related papers (2023-12-04T17:35:42Z) - Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective [106.92016199403042]
We empirically investigate knowledge transfer from larger to smaller models through a parametric perspective.
We employ sensitivity-based techniques to extract and align knowledge-specific parameters between different large language models.
Our findings highlight the critical factors contributing to the process of parametric knowledge transfer.
arXiv Detail & Related papers (2023-10-17T17:58:34Z) - Contextualized Machine Learning [40.415518395978204]
Contextualized Machine Learning estimates heterogeneous functions by applying deep learning to the meta-relationship between contextual information and context-specific parametric models.
We present the open-source PyTorch package ContextualizedML.
arXiv Detail & Related papers (2023-10-17T15:23:00Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - Tracing and Manipulating Intermediate Values in Neural Math Problem
Solvers [29.957075459315384]
How language models process complex input that requires multiple steps of inference is not well understood.
Previous research has shown that information about intermediate values of these inputs can be extracted from the activations of the models.
We introduce a method for analyzing how a Transformer model processes these inputs by focusing on simple arithmetic problems and their intermediate values.
arXiv Detail & Related papers (2023-01-17T08:46:50Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Layer-wise Analysis of a Self-supervised Speech Representation Model [26.727775920272205]
Self-supervised learning approaches have been successful for pre-training speech representation models.
Not much has been studied about the type or extent of information encoded in the pre-trained representations themselves.
arXiv Detail & Related papers (2021-07-10T02:13:25Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.