論文の概要: Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.05269v1
- Date: Mon, 7 Oct 2024 17:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:57:23.954509
- Title: Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models
- Title(参考訳): データアドバイザ:大規模言語モデルの安全アライメントのための動的データキュレーション
- Authors: Fei Wang, Ninareh Mehrabi, Palash Goyal, Rahul Gupta, Kai-Wei Chang, Aram Galstyan,
- Abstract要約: 所望のデータセットの特徴を考慮したデータ生成手法であるデータアドバイザを提案する。
Data Advisorは生成されたデータの状態を監視し、現在のデータセットの弱点を特定し、データ生成の次のイテレーションをアドバイスする。
- 参考スコア(独自算出の注目度): 79.65071553905021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data is a crucial element in large language model (LLM) alignment. Recent studies have explored using LLMs for efficient data collection. However, LLM-generated data often suffers from quality issues, with underrepresented or absent aspects and low-quality datapoints. To address these problems, we propose Data Advisor, an enhanced LLM-based method for generating data that takes into account the characteristics of the desired dataset. Starting from a set of pre-defined principles in hand, Data Advisor monitors the status of the generated data, identifies weaknesses in the current dataset, and advises the next iteration of data generation accordingly. Data Advisor can be easily integrated into existing data generation methods to enhance data quality and coverage. Experiments on safety alignment of three representative LLMs (i.e., Mistral, Llama2, and Falcon) demonstrate the effectiveness of Data Advisor in enhancing model safety against various fine-grained safety issues without sacrificing model utility.
- Abstract(参考訳): データは、大規模言語モデル(LLM)のアライメントにおいて重要な要素である。
近年,LLMを用いた効率的なデータ収集法が研究されている。
しかし、LLMの生成したデータは、表現不足や欠落、低品質のデータポイントなど、品質上の問題に悩まされることが多い。
これらの問題に対処するため,所望のデータセットの特性を考慮したLLMに基づくデータ生成手法であるData Advisorを提案する。
事前に定義された原則のセットから始めて、Data Advisorは生成されたデータの状態を監視し、現在のデータセットの弱点を特定し、それに従ってデータ生成の次のイテレーションをアドバイスする。
Data Advisorは、データ品質とカバレッジを向上させるために、既存のデータ生成メソッドに簡単に統合できる。
3つの代表的なLCM(Mistral、Llama2、Falcon)の安全性アライメント実験は、モデルユーティリティを犠牲にすることなく、様々なきめ細かい安全問題に対するモデル安全性を高める上で、データアドバイザの有効性を実証している。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - A Survey on Data Synthesis and Augmentation for Large Language Models [35.59526251210408]
本稿では,大規模言語モデルのライフサイクルを通じてデータ生成手法をレビューし,要約する。
これらの手法が直面する現在の制約について考察し,今後の開発・研究の道筋について考察する。
論文 参考訳(メタデータ) (2024-10-16T16:12:39Z) - Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning [3.623224034411137]
オフラインマルチエージェント強化学習(英語: offline multi-agent reinforcement learning, MARL)は、静的データセットを用いてマルチエージェントシステムの最適制御ポリシーを見つける研究のエキサイティングな方向である。
この分野は定義上はデータ駆動型だが、これまでのところ、最先端の結果を達成するための努力は、データを無視してきた。
研究の大部分は、一貫した方法論を使わずに独自のデータセットを生成し、これらのデータセットの特徴に関するまばらな情報を提供する。
論文 参考訳(メタデータ) (2024-09-18T14:13:24Z) - Generated Data with Fake Privacy: Hidden Dangers of Fine-tuning Large Language Models on Generated Data [19.93652217096443]
大規模言語モデル(LLM)は、特に微調整後の領域固有のタスクでかなりの成功を収めている。
現実世界のデータによる微調整は通常、特に事前トレーニングデータに微調整サンプルが存在する場合、プライバシー上のリスクにつながる。
LLM生成データによる微調整によってプライバシーが向上するか、さらなるプライバシーリスクが生じるのか?
論文 参考訳(メタデータ) (2024-09-12T10:14:12Z) - HARMONIC: Harnessing LLMs for Tabular Data Synthesis and Privacy Protection [44.225151701532454]
本稿では,表データ生成と評価のための新しいフレームワークHARMONICを提案する。
本フレームワークは, 既存の手法と同等の性能を向上し, また, 合成データの有効性とプライバシーリスクを評価するための評価枠組みを実証する。
論文 参考訳(メタデータ) (2024-08-06T03:21:13Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - SHED: Shapley-Based Automated Dataset Refinement for Instruction Fine-Tuning [16.307467144690683]
大規模な言語モデルは、少量の高品質なデータだけで望ましいパフォーマンスを達成することができる。
大規模なデータセットから高品質なデータを識別して、小さいが効果的なデータセットをキュレートすることが、重要な課題である。
本稿では,Shapley値に基づく自動データセット精錬フレームワークSHEDを紹介する。
論文 参考訳(メタデータ) (2024-04-23T04:56:48Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。