Psychometrics for Hypnopaedia-Aware Machinery via Chaotic Projection of Artificial Mental Imagery
- URL: http://arxiv.org/abs/2410.05284v1
- Date: Sun, 29 Sep 2024 00:59:26 GMT
- Title: Psychometrics for Hypnopaedia-Aware Machinery via Chaotic Projection of Artificial Mental Imagery
- Authors: Ching-Chun Chang, Kai Gao, Shuying Xu, Anastasia Kordoni, Christopher Leckie, Isao Echizen,
- Abstract summary: A backdoor attack involves the clandestine infiltration of a trigger during the learning process.
We propose a cybernetic framework for constant surveillance of backdoors threats.
We develop a self-aware unlearning mechanism to autonomously detach a machine's behaviour from the backdoor trigger.
- Score: 21.450023199935206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural backdoors represent insidious cybersecurity loopholes that render learning machinery vulnerable to unauthorised manipulations, potentially enabling the weaponisation of artificial intelligence with catastrophic consequences. A backdoor attack involves the clandestine infiltration of a trigger during the learning process, metaphorically analogous to hypnopaedia, where ideas are implanted into a subject's subconscious mind under the state of hypnosis or unconsciousness. When activated by a sensory stimulus, the trigger evokes conditioned reflex that directs a machine to mount a predetermined response. In this study, we propose a cybernetic framework for constant surveillance of backdoors threats, driven by the dynamic nature of untrustworthy data sources. We develop a self-aware unlearning mechanism to autonomously detach a machine's behaviour from the backdoor trigger. Through reverse engineering and statistical inference, we detect deceptive patterns and estimate the likelihood of backdoor infection. We employ model inversion to elicit artificial mental imagery, using stochastic processes to disrupt optimisation pathways and avoid convergent but potentially flawed patterns. This is followed by hypothesis analysis, which estimates the likelihood of each potentially malicious pattern being the true trigger and infers the probability of infection. The primary objective of this study is to maintain a stable state of equilibrium between knowledge fidelity and backdoor vulnerability.
Related papers
- Demystifying Poisoning Backdoor Attacks from a Statistical Perspective [35.30533879618651]
Backdoor attacks pose a significant security risk due to their stealthy nature and potentially serious consequences.
This paper evaluates the effectiveness of any backdoor attack incorporating a constant trigger.
Our derived understanding applies to both discriminative and generative models.
arXiv Detail & Related papers (2023-10-16T19:35:01Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Backdooring Explainable Machine Learning [0.8180960351554997]
We demonstrate blinding attacks that can fully disguise an ongoing attack against the machine learning model.
Similar to neural backdoors, we modify the model's prediction upon trigger presence but simultaneously also fool the provided explanation.
arXiv Detail & Related papers (2022-04-20T14:40:09Z) - Few-shot Backdoor Defense Using Shapley Estimation [123.56934991060788]
We develop a new approach called Shapley Pruning to mitigate backdoor attacks on deep neural networks.
ShapPruning identifies the few infected neurons (under 1% of all neurons) and manages to protect the model's structure and accuracy.
Experiments demonstrate the effectiveness and robustness of our method against various attacks and tasks.
arXiv Detail & Related papers (2021-12-30T02:27:03Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Backdoor Smoothing: Demystifying Backdoor Attacks on Deep Neural
Networks [25.23881974235643]
We show that backdoor attacks induce a smoother decision function around the triggered samples -- a phenomenon which we refer to as textitbackdoor smoothing.
Our experiments show that smoothness increases when the trigger is added to the input samples, and that this phenomenon is more pronounced for more successful attacks.
arXiv Detail & Related papers (2020-06-11T18:28:54Z) - Rethinking the Trigger of Backdoor Attack [83.98031510668619]
Currently, most of existing backdoor attacks adopted the setting of emphstatic trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area.
We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training.
arXiv Detail & Related papers (2020-04-09T17:19:37Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.