Research on short-term load forecasting model based on VMD and IPSO-ELM
- URL: http://arxiv.org/abs/2410.05300v1
- Date: Fri, 4 Oct 2024 09:20:33 GMT
- Title: Research on short-term load forecasting model based on VMD and IPSO-ELM
- Authors: Qiang Xie,
- Abstract summary: This study introduces an advanced combined forecasting method that integrates Variational Mode Decomposition (VMD) with an Improved Particle Swarm Optimization (IPSO) algorithm to optimize the Extreme Learning Machine (ELM)
Simulation results indicate that the proposed method significantly improves prediction accuracy and convergence speed compared to traditional ELM, PSO-ELM, and PSO-ELM methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To enhance the accuracy of power load forecasting in wind farms, this study introduces an advanced combined forecasting method that integrates Variational Mode Decomposition (VMD) with an Improved Particle Swarm Optimization (IPSO) algorithm to optimize the Extreme Learning Machine (ELM). Initially, the VMD algorithm is employed to perform high-precision modal decomposition of the original power load data, which is then categorized into high-frequency and low-frequency sequences based on mutual information entropy theory. Subsequently, this research profoundly modifies the traditional multiverse optimizer by incorporating Tent chaos mapping, exponential travel distance rate, and an elite reverse learning mechanism, developing the IPSO-ELM prediction model. This model independently predicts the high and low-frequency sequences and reconstructs the data to achieve the final forecasting results. Simulation results indicate that the proposed method significantly improves prediction accuracy and convergence speed compared to traditional ELM, PSO-ELM, and PSO-ELM methods.
Related papers
- Initialization Method for Factorization Machine Based on Low-Rank Approximation for Constructing a Corrected Approximate Ising Model [1.194799054956877]
An Ising model is approximated with a high degree of accuracy using the Factorization Machine (FM), a machine learning model.
It is anticipated that the optimization performance of FMQA will be enhanced through the implementation of the warm-start method.
arXiv Detail & Related papers (2024-10-16T17:06:55Z) - Enhancing Channel Estimation in Quantized Systems with a Generative Prior [9.486021754040483]
We propose to leverage a Gaussian mixture model (GMM) as generative prior, capturing the channel distribution of the propagation environment.
The proposed estimation framework exhibits adaptability to higher resolution systems and alternative generative priors.
arXiv Detail & Related papers (2024-04-26T09:27:59Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA)
We also introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML)
Our comparative analyses show that SH-RML offers better uncertainty compared to conventional ESMDA for the case study.
arXiv Detail & Related papers (2024-02-09T00:24:46Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Adaptive Latent Factor Analysis via Generalized Momentum-Incorporated
Particle Swarm Optimization [6.2303427193075755]
A gradient descent (SGD) algorithm is an effective learning strategy to build a latent factor analysis (LFA) model on a high-dimensional and incomplete (HDI) matrix.
A particle swarm optimization (PSO) algorithm is commonly adopted to make an SGD-based LFA model's hyper- parameters, i.e., learning rate and regularization coefficient, self-adaptation.
This paper incorporates more historical information into each particle's evolutionary process for avoiding premature convergence.
arXiv Detail & Related papers (2022-08-04T03:15:07Z) - Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
Inverse Problem [97.64313409741614]
We prove fast mixing and characterize the stationary distribution of the Langevin Algorithm for inverting random weighted DNN generators.
We propose to do posterior sampling in the latent space of a pre-trained generative model.
arXiv Detail & Related papers (2022-06-18T03:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.