Enhancing Channel Estimation in Quantized Systems with a Generative Prior
- URL: http://arxiv.org/abs/2405.03542v1
- Date: Fri, 26 Apr 2024 09:27:59 GMT
- Title: Enhancing Channel Estimation in Quantized Systems with a Generative Prior
- Authors: Benedikt Fesl, Aziz Banna, Wolfgang Utschick,
- Abstract summary: We propose to leverage a Gaussian mixture model (GMM) as generative prior, capturing the channel distribution of the propagation environment.
The proposed estimation framework exhibits adaptability to higher resolution systems and alternative generative priors.
- Score: 9.486021754040483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Channel estimation in quantized systems is challenging, particularly in low-resolution systems. In this work, we propose to leverage a Gaussian mixture model (GMM) as generative prior, capturing the channel distribution of the propagation environment, to enhance a classical estimation technique based on the expectation-maximization (EM) algorithm for one-bit quantization. Thereby, a maximum a posteriori (MAP) estimate of the most responsible mixture component is inferred for a quantized received signal, which is subsequently utilized in the EM algorithm as side information. Numerical results demonstrate the significant performance improvement of our proposed approach over both a simplistic Gaussian prior and current state-of-the-art channel estimators. Furthermore, the proposed estimation framework exhibits adaptability to higher resolution systems and alternative generative priors.
Related papers
- Initialization Method for Factorization Machine Based on Low-Rank Approximation for Constructing a Corrected Approximate Ising Model [1.194799054956877]
An Ising model is approximated with a high degree of accuracy using the Factorization Machine (FM), a machine learning model.
It is anticipated that the optimization performance of FMQA will be enhanced through the implementation of the warm-start method.
arXiv Detail & Related papers (2024-10-16T17:06:55Z) - Research on short-term load forecasting model based on VMD and IPSO-ELM [0.0]
This study introduces an advanced combined forecasting method that integrates Variational Mode Decomposition (VMD) with an Improved Particle Swarm Optimization (IPSO) algorithm to optimize the Extreme Learning Machine (ELM)
Simulation results indicate that the proposed method significantly improves prediction accuracy and convergence speed compared to traditional ELM, PSO-ELM, and PSO-ELM methods.
arXiv Detail & Related papers (2024-10-04T09:20:33Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
We prove the first rigorous learning guarantees for neural networks based on unrolling approximate message passing (AMP)
For compressed sensing, we prove that when trained on data drawn from a product prior, the layers of the network converge to the same denoisers used in Bayes AMP.
arXiv Detail & Related papers (2024-09-19T17:56:16Z) - Optimization of Iterative Blind Detection based on Expectation Maximization and Belief Propagation [29.114100423416204]
We propose a blind symbol detection for block-fading linear inter-symbol channels.
We design a joint channel estimation and detection scheme that combines the study expectation algorithm and the ubiquitous belief propagation algorithm.
We show that the proposed method can learn efficient schedules that generalize well and even outperform coherent BP detection in high signal-to-noise scenarios.
arXiv Detail & Related papers (2024-08-05T08:45:50Z) - Quantized Compressed Sensing with Score-Based Generative Models [6.066320781596792]
We propose an unsupervised data-driven approach called quantized compressed sensing with SGM (QCS-SGM)
The proposed QCS-SGM significantly outperforms existing state-of-the-art algorithms by a large margin for both in-distribution and out-of-distribution samples.
As a posterior sampling method, QCS-SGM can be easily used to obtain confidence intervals or uncertainty estimates of the reconstructed results.
arXiv Detail & Related papers (2022-11-02T15:19:07Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.