論文の概要: Output Scouting: Auditing Large Language Models for Catastrophic Responses
- arxiv url: http://arxiv.org/abs/2410.05305v1
- Date: Fri, 4 Oct 2024 18:18:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:37:51.362443
- Title: Output Scouting: Auditing Large Language Models for Catastrophic Responses
- Title(参考訳): アウトプットスカウト:破滅的な対応のための大規模言語モデルの検討
- Authors: Andrew Bell, Joao Fonseca,
- Abstract要約: 近年、Large Language Models(LLMs)の使用が個人に重大な害を与え、AI安全性への関心が高まっている。
LLMの安全性が問題となる理由の1つは、モデルが有害な出力を発生させる確率が少なくともゼロでない場合が多いことである。
本稿では,任意の確率分布に適合する任意のプロンプトに対して,意味論的に流動的なアウトプットを生成することを目的としたアウトプット・スカウトを提案する。
- 参考スコア(独自算出の注目度): 1.5703117863274307
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent high profile incidents in which the use of Large Language Models (LLMs) resulted in significant harm to individuals have brought about a growing interest in AI safety. One reason LLM safety issues occur is that models often have at least some non-zero probability of producing harmful outputs. In this work, we explore the following scenario: imagine an AI safety auditor is searching for catastrophic responses from an LLM (e.g. a "yes" responses to "can I fire an employee for being pregnant?"), and is able to query the model a limited number times (e.g. 1000 times). What is a strategy for querying the model that would efficiently find those failure responses? To this end, we propose output scouting: an approach that aims to generate semantically fluent outputs to a given prompt matching any target probability distribution. We then run experiments using two LLMs and find numerous examples of catastrophic responses. We conclude with a discussion that includes advice for practitioners who are looking to implement LLM auditing for catastrophic responses. We also release an open-source toolkit (https://github.com/joaopfonseca/outputscouting) that implements our auditing framework using the Hugging Face transformers library.
- Abstract(参考訳): 近年、Large Language Models(LLMs)の使用が個人に重大な害を与え、AI安全性への関心が高まっている。
LLMの安全性が問題となる理由の1つは、モデルが有害な出力を発生させる確率が少なくともゼロでない場合が多いことである。
この研究では、AI安全監査官がLSMから破滅的な反応(例:「妊娠のために従業員を解雇できるか?」に対する"yes"応答)を探索し、限られた回数(例:1000回)でモデルに問い合わせることができると仮定する。
これらの障害応答を効率的に見つけるために、モデルをクエリするための戦略は何ですか?
そこで本研究では,任意の確率分布に適合する任意のプロンプトに対して,意味論的に流動的なアウトプットを生成することを目的としたアウトプット・スカウトを提案する。
次に、2つのLSMを用いて実験を行い、破滅反応の多くの例を見出した。
破滅的な対応のために LLM 監査を実施しようとしている実践者へのアドバイスを含む議論を締めくくった。
また、Hugging Face Transformersライブラリを使用して監査フレームワークを実装するオープンソースツールキット(https://github.com/joaopfonseca/outputscouting)もリリースしています。
関連論文リスト
- Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
大規模言語モデル(LLM)は、出力の信頼性が不可欠である様々な高い領域で採用されている。
本研究では,不確実性推定の脆弱性を調査し,攻撃の可能性を探る。
攻撃者がLSMにバックドアを埋め込むことができ、入力中の特定のトリガーによって起動されると、最終的な出力に影響を与えることなくモデルの不確実性を操作できることを示す。
論文 参考訳(メタデータ) (2024-07-15T23:41:11Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models [6.931433424951554]
大規模言語モデル(LLM)は新たなセキュリティリスクを導入するが、これらのリスクを計測し、削減するための包括的な評価スイートはほとんどない。
LLMのセキュリティリスクと能力を定量化する新しいベンチマークであるBenchmarkNameを提案する。
我々は,GPT-4,Mistral,Meta Llama 370B-Instruct,Code Llamaを含む複数のSOTA (State-of-the-art) LLMを評価した。
論文 参考訳(メタデータ) (2024-04-19T20:11:12Z) - Curiosity-driven Red-teaming for Large Language Models [43.448044721642916]
大規模言語モデル(LLM)は、多くの自然言語アプリケーションにとって大きな可能性を秘めているが、誤ったまたは有害なコンテンツを生成するリスクがある。
ヒューマンテスタにのみ依存することは、高価で時間を要する。
好奇心駆動型レッド・チームリング (CRT) の手法は, 既存の方法と比較して, 有効性を維持したり, 向上させたりしながら, テストケースのカバレッジを向上する。
論文 参考訳(メタデータ) (2024-02-29T18:55:03Z) - LLMAuditor: A Framework for Auditing Large Language Models Using Human-in-the-Loop [7.77005079649294]
有効な方法は、同じ質問の異なるバージョンを使って、大きな言語モデルを探索することである。
この監査方法を大規模に運用するには、これらのプローブを確実かつ自動的に作成するためのアプローチが必要である。
我々はLLMAuditorフレームワークを提案し、異なるLLMとHIL(Human-in-the-loop)を併用する。
このアプローチは、検証性と透明性を提供すると同時に、同じLLMへの円形依存を回避する。
論文 参考訳(メタデータ) (2024-02-14T17:49:31Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
モデルがどのように処理し,クエリの安全性を判断するかを検討することで,過剰スキルの要因について検討する。
以上の結果から,モデル内にショートカットが存在することが明らかとなり,"キル"のような有害な単語が過剰に認識され,安全性が強調され,過度なスキルが増すことが示唆された。
我々は、この現象を緩和するために、トレーニングフリーでモデルに依存しないセルフコントラストデコーディング(Self-Contrastive Decoding、CD)を導入する。
論文 参考訳(メタデータ) (2024-01-31T07:26:47Z) - Make Them Spill the Beans! Coercive Knowledge Extraction from
(Production) LLMs [31.80386572346993]
LLMが有害な要求を拒絶しても、有害な応答が出力ロジットの奥深くに隠されることがよくあります。
このアプローチは、脱獄方法と異なり、有効性は62%に対して92%、高速性は10~20倍である。
本研究は, コーディングタスクに特化して設計されたモデルから, 有毒な知識を抽出できることを示唆する。
論文 参考訳(メタデータ) (2023-12-08T01:41:36Z) - Probing the Multi-turn Planning Capabilities of LLMs via 20 Question
Games [14.063311955315077]
大規模言語モデル(LLM)は、明らかに求められている質問に答えるのに効果的である。
不明瞭なクエリに直面した場合、予測不能に動作し、誤った出力を生成することができる。
このことは、曖昧さを効果的に解決するために明確化を問うことができる知的エージェントの開発の必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2023-10-02T16:55:37Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
大規模言語モデル(LLM)の純粋因果推論スキルをテストする。
相関文の集合を取り、変数間の因果関係を決定する新しいタスクCorr2Causeを定式化する。
これらのモデルがタスクのランダムな性能にほぼ近い結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-09T12:09:15Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。