The OCON model: an old but gold solution for distributable supervised classification
- URL: http://arxiv.org/abs/2410.05320v1
- Date: Sat, 5 Oct 2024 09:15:01 GMT
- Title: The OCON model: an old but gold solution for distributable supervised classification
- Authors: Stefano Giacomelli, Marco Giordano, Claudia Rinaldi,
- Abstract summary: This paper introduces a structured application of the One-Class approach and the One-Class-One-Network model for supervised classification tasks.
We achieve classification accuracy comparable to nowadays complex architectures (90.0 - 93.7%)
- Score: 0.28675177318965045
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces to a structured application of the One-Class approach and the One-Class-One-Network model for supervised classification tasks, specifically addressing a vowel phonemes classification case study within the Automatic Speech Recognition research field. Through pseudo-Neural Architecture Search and Hyper-Parameters Tuning experiments conducted with an informed grid-search methodology, we achieve classification accuracy comparable to nowadays complex architectures (90.0 - 93.7%). Despite its simplicity, our model prioritizes generalization of language context and distributed applicability, supported by relevant statistical and performance metrics. The experiments code is openly available at our GitHub.
Related papers
- The OCON model: an old but green solution for distributable supervised classification for acoustic monitoring in smart cities [0.28675177318965045]
This paper focuses on vowel phonemes classification and speakers recognition for the Automatic Speech Recognition domain.
For our case-study, the ASR model runs on a proprietary sensing and lightning system, exploited to monitor acoustic and air pollution on urban streets.
We formalize combinations of pseudo-Neural Architecture Search and Hyper-s Tuning experiments, using an informed grid-search methodology, to achieve classification accuracy comparable to nowadays most complex architectures.
arXiv Detail & Related papers (2024-10-05T09:47:54Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural
Architecture Search [15.454709248397208]
This study focuses on how to find feasible deep models under diverse design objectives.
We propose a classification-wise Pareto evolution approach for one-shot NAS, where an online classifier is trained to predict the dominance relationship between the candidate and constructed reference architectures.
We find a number of neural architectures with different model sizes ranging from 2M to 6M under diverse objectives and constraints.
arXiv Detail & Related papers (2021-09-14T13:28:07Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
This work focuses on few-shot relation classification (FSRC)
We propose an adaptive mixture mechanism to add label words to the representation of the class prototype.
Experiments have been conducted on FewRel under different few-shot (FS) settings.
arXiv Detail & Related papers (2021-01-10T11:25:42Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Coarse-to-Fine Memory Matching for Joint Retrieval and Classification [0.7081604594416339]
We present a novel end-to-end language model for joint retrieval and classification.
We evaluate it on the standard blind test set of the FEVER fact verification dataset.
We extend exemplar auditing to this setting for analyzing and constraining the model.
arXiv Detail & Related papers (2020-11-29T05:06:03Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.