From Incomplete Coarse-Grained to Complete Fine-Grained: A Two-Stage Framework for Spatiotemporal Data Reconstruction
- URL: http://arxiv.org/abs/2410.05323v1
- Date: Sat, 5 Oct 2024 13:16:53 GMT
- Title: From Incomplete Coarse-Grained to Complete Fine-Grained: A Two-Stage Framework for Spatiotemporal Data Reconstruction
- Authors: Ziyu Sun, Haoyang Su, En Wang, Funing Yang, Yongjian Yang, Wenbin Liu,
- Abstract summary: We introduce a two-stage data inference framework, Diffcon, grounded in the Denoising Diffusion Probabilistic Model (DDPM)
We conduct experiments on multiple real-world datasets to demonstrate the superiority of our method.
- Score: 11.18240409124747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of various sensing devices, spatiotemporal data is becoming increasingly important nowadays. However, due to sensing costs and privacy concerns, the collected data is often incomplete and coarse-grained, limiting its application to specific tasks. To address this, we propose a new task called spatiotemporal data reconstruction, which aims to infer complete and fine-grained data from sparse and coarse-grained observations. To achieve this, we introduce a two-stage data inference framework, DiffRecon, grounded in the Denoising Diffusion Probabilistic Model (DDPM). In the first stage, we present Diffusion-C, a diffusion model augmented by ST-PointFormer, a powerful encoder designed to leverage the spatial correlations between sparse data points. Following this, the second stage introduces Diffusion-F, which incorporates the proposed T-PatternNet to capture the temporal pattern within sequential data. Together, these two stages form an end-to-end framework capable of inferring complete, fine-grained data from incomplete and coarse-grained observations. We conducted experiments on multiple real-world datasets to demonstrate the superiority of our method.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Retrieval-Augmented Diffusion Models for Time Series Forecasting [19.251274915003265]
We propose a Retrieval- Augmented Time series Diffusion model (RATD)
RATD consists of two parts: an embedding-based retrieval process and a reference-guided diffusion model.
Our approach allows leveraging meaningful samples within the database to aid in sampling, thus maximizing the utilization of datasets.
arXiv Detail & Related papers (2024-10-24T13:14:39Z) - Toward Time-Continuous Data Inference in Sparse Urban CrowdSensing [5.105223708885987]
Mobile Crowd Sensing (MCS) is a promising paradigm that leverages mobile users and their smart portable devices to perform various real-world tasks.
Sparse MCS has emerged as a more practical alternative, collecting data from a limited number of target subareas and utilizing inference algorithms to complete the full sensing map.
In this paper, we go from fine-grained completion, i.e., the subdivision of sensing cycles into minimal time units, towards a more accurate, time-continuous completion.
arXiv Detail & Related papers (2024-08-27T19:25:41Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Dataset Condensation for Time Series Classification via Dual Domain Matching [12.317728375957717]
We propose a novel framework named dataset textittextbfCondensation for textittextbfTime textittextbfSeries textittextbfClassification via Dual Domain Matching.
Our proposed framework aims to generate a condensed dataset that matches the surrogate objectives in both the time and frequency domains.
arXiv Detail & Related papers (2024-03-12T02:05:06Z) - STARFlow: Spatial Temporal Feature Re-embedding with Attentive Learning for Real-world Scene Flow [5.476991379461233]
We propose global attentive flow embedding to match all-to-all point pairs in both Euclidean space.
We leverage novel domain adaptive losses to bridge the gap of motion inference from synthetic to real-world.
Our approach achieves state-of-the-art performance across various datasets, with particularly outstanding results on real-world LiDAR-scanned datasets.
arXiv Detail & Related papers (2024-03-11T04:56:10Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
This work uses relational inference to fill in the incomplete data.
We propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects.
arXiv Detail & Related papers (2021-05-02T06:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.