Uncovering Temporal Patterns in Visualizations of High-Dimensional Data
- URL: http://arxiv.org/abs/2403.19040v2
- Date: Sat, 14 Dec 2024 13:35:23 GMT
- Title: Uncovering Temporal Patterns in Visualizations of High-Dimensional Data
- Authors: Pavlin G. Poličar, Blaž Zupan,
- Abstract summary: A key approach to exploring such data is dimensionality reduction, which embeds high-dimensional data in two dimensions to enable visual exploration.
We propose a formal extension to existing dimensionality reduction methods that incorporates two temporal loss terms that explicitly highlight temporal progression in the embedded visualizations.
- Score: 0.0
- License:
- Abstract: With the increasing availability of high-dimensional data, analysts often rely on exploratory data analysis to understand complex data sets. A key approach to exploring such data is dimensionality reduction, which embeds high-dimensional data in two dimensions to enable visual exploration. However, popular embedding techniques, such as t-SNE and UMAP, typically assume that data points are independent. When this assumption is violated, as in time-series data, the resulting visualizations may fail to reveal important temporal patterns and trends. To address this, we propose a formal extension to existing dimensionality reduction methods that incorporates two temporal loss terms that explicitly highlight temporal progression in the embedded visualizations. Through a series of experiments on both synthetic and real-world datasets, we demonstrate that our approach effectively uncovers temporal patterns and improves the interpretability of the visualizations. Furthermore, the method improves temporal coherence while preserving the fidelity of the embeddings, providing a robust tool for dynamic data analysis.
Related papers
- Ultralow-dimensionality reduction for identifying critical transitions by spatial-temporal PCA [8.474631244771928]
stPCA represents dynamics of a high-dimensional time-series by only a single latent variable without distortion.
The dynamics of this single variable is analytically solved and theoretically preserves the temporal property of original time-series.
Its applications to real-world datasets demonstrated the effectiveness of stPCA.
arXiv Detail & Related papers (2025-01-22T02:09:52Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
We present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data.
A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time.
Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal.
arXiv Detail & Related papers (2024-10-09T11:37:09Z) - Interactive dense pixel visualizations for time series and model attribution explanations [8.24039921933289]
DAVOTS is an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization.
We apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration.
arXiv Detail & Related papers (2024-08-27T14:02:21Z) - Reconstructing Spatiotemporal Data with C-VAEs [49.1574468325115]
Conditional continuous representation of moving regions is commonly used.
In this work, we explore the capabilities of Conditional Varitemporal Autoencoder (C-VAE) models to generate realistic representations of regions' evolution.
arXiv Detail & Related papers (2023-07-12T15:34:10Z) - SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for
Structured Representations of High-Rate Time Series [23.074319429090092]
We propose SOM-CPC, a model that visualizes data in an organized 2D manifold, while preserving higher-dimensional information.
We show on both synthetic and real-life data (physiological data and audio recordings) that SOM-CPC outperforms strong baselines like DL-based feature extraction.
arXiv Detail & Related papers (2022-05-31T15:21:21Z) - A Variational Autoencoder for Heterogeneous Temporal and Longitudinal
Data [0.3749861135832073]
Recently proposed extensions to VAEs that can handle temporal and longitudinal data have applications in healthcare, behavioural modelling, and predictive maintenance.
We propose the heterogeneous longitudinal VAE (HL-VAE) that extends the existing temporal and longitudinal VAEs to heterogeneous data.
HL-VAE provides efficient inference for high-dimensional datasets and includes likelihood models for continuous, count, categorical, and ordinal data.
arXiv Detail & Related papers (2022-04-20T10:18:39Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS) is a novel disentanglement enhancement framework for sequential data.
DTS generates hierarchical semantic concepts as the interpretable and disentangled representation of time-series.
DTS achieves superior performance in downstream applications, with high interpretability of semantic concepts.
arXiv Detail & Related papers (2021-05-17T22:02:24Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
This work uses relational inference to fill in the incomplete data.
We propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects.
arXiv Detail & Related papers (2021-05-02T06:05:54Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.