論文の概要: TA3: Testing Against Adversarial Attacks on Machine Learning Models
- arxiv url: http://arxiv.org/abs/2410.05334v1
- Date: Sun, 6 Oct 2024 15:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:27:19.006276
- Title: TA3: Testing Against Adversarial Attacks on Machine Learning Models
- Title(参考訳): TA3: マシンラーニングモデルにおける敵攻撃に対するテスト
- Authors: Yuanzhe Jin, Min Chen,
- Abstract要約: 敵攻撃は、機械学習(ML)モデルを多くのアプリケーションに展開する上で大きな脅威である。
このような攻撃に対してMLモデルをテストすることは、MLモデルを評価し改善するための重要なステップになりつつある。
敵攻撃防止テスト(TA3)のワークフローを支援する対話型システムの設計と開発について報告する。
- 参考スコア(独自算出の注目度): 2.2584611101867917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks are major threats to the deployment of machine learning (ML) models in many applications. Testing ML models against such attacks is becoming an essential step for evaluating and improving ML models. In this paper, we report the design and development of an interactive system for aiding the workflow of Testing Against Adversarial Attacks (TA3). In particular, with TA3, human-in-the-loop (HITL) enables human-steered attack simulation and visualization-assisted attack impact evaluation. While the current version of TA3 focuses on testing decision tree models against adversarial attacks based on the One Pixel Attack Method, it demonstrates the importance of HITL in ML testing and the potential application of HITL to the ML testing workflows for other types of ML models and other types of adversarial attacks.
- Abstract(参考訳): 敵攻撃は、機械学習(ML)モデルを多くのアプリケーションに展開する上で大きな脅威である。
このような攻撃に対してMLモデルをテストすることは、MLモデルを評価し改善するための重要なステップになりつつある。
本稿では,TA3(Testing Against Adversarial Attacks)のワークフローを支援する対話型システムの設計と開発について報告する。
特に、TA3では、Human-in-the-loop (HITL) は人間の操縦による攻撃シミュレーションと可視化による攻撃影響評価を可能にする。
TA3の現行バージョンは、One Pixel Attack Methodに基づく敵攻撃に対する決定ツリーモデルのテストに重点を置いているが、MLテストにおけるHITLの重要性と、他の種類のMLモデルや他の種類の敵攻撃に対するMLテストワークフローへのHITLの潜在的な適用を実証している。
関連論文リスト
- Investigating Adversarial Attacks in Software Analytics via Machine Learning Explainability [11.16693333878553]
本研究では、ソフトウェア解析タスクにおけるMLモデルの堅牢性を測定するために、ML説明可能性と敵攻撃の関係について検討する。
6つのデータセット、3つのML説明可能性技術、7つのMLモデルを含む我々の実験は、ソフトウェア分析タスクにおいてMLモデルに対する敵攻撃を成功させるのにML説明可能性を使用することができることを示した。
論文 参考訳(メタデータ) (2024-08-07T23:21:55Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
本稿では、モデル抽出攻撃に対するリコメンデータシステムに対する防御のために、グラディエントベースのランキング最適化(GRO)を導入する。
GROは、攻撃者の代理モデルの損失を最大化しながら、保護対象モデルの損失を最小限にすることを目的としている。
その結果,モデル抽出攻撃に対するGROの防御効果は良好であった。
論文 参考訳(メタデータ) (2023-10-25T03:30:42Z) - SecurityNet: Assessing Machine Learning Vulnerabilities on Public Models [74.58014281829946]
本研究では, モデル盗難攻撃, メンバーシップ推論攻撃, パブリックモデルにおけるバックドア検出など, いくつかの代表的な攻撃・防御の有効性を解析する。
実験により,これらの攻撃・防御性能は,自己学習モデルと比較して,公共モデルによって大きく異なることが示された。
論文 参考訳(メタデータ) (2023-10-19T11:49:22Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning [1.6574413179773757]
敵攻撃は、MLモデルを騙して欠陥予測を生成することを目的としている。
敵攻撃はMLベースのNIDSを妥協する。
本実験は, 対人訓練を伴わない継続的再訓練は, 対人攻撃の有効性を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-08T18:32:08Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
実際には、特定の列車およびテストデータセットに関する計量分析は、信頼性や公正なMLモデルを保証しない。
本稿では,セマンティック・イメージ・アタック(SIA)を提案する。
論文 参考訳(メタデータ) (2023-03-23T03:13:04Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
本研究では,データ固有の敵インスタンスから,データに依存しない被害者モデル(VM)情報を推測できるかどうかを問う。
我々は,135件の被害者モデルから生成された7種類の攻撃に対して,敵攻撃のデータセットを収集する。
単純な教師付きモデル解析ネットワーク(MPN)は、見えない敵攻撃からVM属性を推測できることを示す。
論文 参考訳(メタデータ) (2023-03-13T21:21:49Z) - Machine Learning Security against Data Poisoning: Are We There Yet? [23.809841593870757]
この記事では、機械学習モデル学習に使用されるトレーニングデータを侵害するデータ中毒攻撃についてレビューする。
基本的なセキュリティ原則を用いてこれらの攻撃を緩和するか、あるいはML指向の防御機構をデプロイするかについて議論する。
論文 参考訳(メタデータ) (2022-04-12T17:52:09Z) - From Zero-Shot Machine Learning to Zero-Day Attack Detection [3.6704226968275258]
ネットワーク侵入検知システム(Network Intrusion Detection Systems)のような特定のアプリケーションでは、モデルが本番環境で観測する可能性が高いすべての攻撃クラスのデータサンプルを取得することは困難である。
本稿では,ゼロデイアタックシナリオの検出において,MLモデルの性能を評価するため,ゼロショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-09-30T06:23:00Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。