GreenLight-Gym: A Reinforcement Learning Benchmark Environment for Greenhouse Crop Production Control
- URL: http://arxiv.org/abs/2410.05336v1
- Date: Sun, 6 Oct 2024 18:25:23 GMT
- Title: GreenLight-Gym: A Reinforcement Learning Benchmark Environment for Greenhouse Crop Production Control
- Authors: Bart van Laatum, Eldert J. van Henten, Sjoerd Boersma,
- Abstract summary: Reinforcement Learning (RL) is a promising approach that can learn a control policy to automate greenhouse management.
We present GreenLight-Gym, the first open-source environment designed for training and evaluating RL algorithms on the state-of-the-art greenhouse model GreenLight.
Second, we compare two reward-shaping approaches, using either a multiplicative or additive penalty, to enforce state boundaries.
Third, we evaluate RL performance on a disjoint training and testing weather dataset, demonstrating improved generalisation to unseen conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling greenhouse crop production systems is a complex task due to uncertain and non-linear dynamics between crops, indoor and outdoor climate, and economics. The declining number of skilled growers necessitates the development of autonomous greenhouse control systems. Reinforcement Learning (RL) is a promising approach that can learn a control policy to automate greenhouse management. RL optimises a control policy through interactions with a model of the greenhouse while guided by an economic-based reward function. However, its application to real-world systems is limited due to discrepancies between models and real-world dynamics. Moreover, RL controllers may struggle to maintain state constraints while optimising the primary objective, especially when models inadequately capture the adverse effects of constraint violations on crop growth. Also, the generalisation to novel states, for example, due to unseen weather trajectories, is underexplored in RL-based greenhouse control. This work addresses these challenges through three key contributions. First, we present GreenLight-Gym, the first open-source environment designed for training and evaluating RL algorithms on the state-of-the-art greenhouse model GreenLight. GreenLight-Gym enables the community to benchmark RL-based control methodologies. Second, we compare two reward-shaping approaches, using either a multiplicative or additive penalty, to enforce state boundaries. The additive penalty achieves more stable training while better adhering to state constraints, while the multiplicative penalty yields marginally higher profits. Finally, we evaluate RL performance on a disjoint training and testing weather dataset, demonstrating improved generalisation to unseen conditions. Our environment and experiment scripts are open-sourced, facilitating innovative research on learning-based greenhouse control.
Related papers
- A Comparative Study of Deep Reinforcement Learning for Crop Production Management [13.123171643387668]
Reinforcement learning (RL) has emerged as a promising tool for developing adaptive crop management policies.
In the gym-DSSAT crop model environment, one of the most widely used simulators for crop management, proximal policy optimization (PPO) and deep Q-networks (DQN) have shown promising results.
In this study, we evaluated PPO and DQN against static baseline policies across three different RL tasks, fertilization, irrigation, and mixed management, provided by the gym-DSSAT environment.
arXiv Detail & Related papers (2024-11-06T18:35:51Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Intelligent Agricultural Greenhouse Control System Based on Internet of
Things and Machine Learning [0.0]
This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning.
The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage.
arXiv Detail & Related papers (2024-02-14T09:07:00Z) - A Safe Reinforcement Learning Algorithm for Supervisory Control of Power
Plants [7.1771300511732585]
Model-free Reinforcement learning (RL) has emerged as a promising solution for control tasks.
We propose a chance-constrained RL algorithm based on Proximal Policy Optimization for supervisory control.
Our approach achieves the smallest distance of violation and violation rate in a load-follow maneuver for an advanced Nuclear Power Plant design.
arXiv Detail & Related papers (2024-01-23T17:52:49Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Surrogate Empowered Sim2Real Transfer of Deep Reinforcement Learning for
ORC Superheat Control [12.567922037611261]
This paper proposes a Sim2Real transfer learning-based DRL control method for ORC superheat control.
Experimental results show that the proposed method greatly improves the training speed of DRL in ORC control problems.
arXiv Detail & Related papers (2023-08-05T01:59:44Z) - CCE: Sample Efficient Sparse Reward Policy Learning for Robotic Navigation via Confidence-Controlled Exploration [72.24964965882783]
Confidence-Controlled Exploration (CCE) is designed to enhance the training sample efficiency of reinforcement learning algorithms for sparse reward settings such as robot navigation.
CCE is based on a novel relationship we provide between gradient estimation and policy entropy.
We demonstrate through simulated and real-world experiments that CCE outperforms conventional methods that employ constant trajectory lengths and entropy regularization.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - CoRL: Environment Creation and Management Focused on System Integration [0.0]
The Core Reinforcement Learning library (CoRL) is a modular, composable, and hyper-configurable environment creation tool.
It allows minute control over agent observations, rewards, and done conditions through the use of easy-to-read configuration files, pydantic validators, and a functor design pattern.
arXiv Detail & Related papers (2023-03-03T19:01:53Z) - Dichotomy of Control: Separating What You Can Control from What You
Cannot [129.62135987416164]
We propose a future-conditioned supervised learning framework that separates mechanisms within a policy's control (actions) from those beyond a policy's control (environmentity)
We show that DoC yields policies that are consistent with their conditioning inputs, ensuring that conditioning a learned policy on a desired high-return future outcome will correctly induce high-return behavior.
arXiv Detail & Related papers (2022-10-24T17:49:56Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRL implements model-free Reinforcement Learning (RL) algorithms over unknown Decision Processes (MDPs)
We present case studies to demonstrate the applicability, ease of use, scalability, and performance of LCRL.
arXiv Detail & Related papers (2022-09-21T13:21:00Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Actor-Critic based Improper Reinforcement Learning [61.430513757337486]
We consider an improper reinforcement learning setting where a learner is given $M$ base controllers for an unknown Markov decision process.
We propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic scheme and a Natural Actor-Critic scheme.
arXiv Detail & Related papers (2022-07-19T05:55:02Z) - Deep Reinforcement Learning with Shallow Controllers: An Experimental
Application to PID Tuning [3.9146761527401424]
We demonstrate the challenges in implementing a state of the art deep RL algorithm on a real physical system.
At the core of our approach is the use of a PID controller as the trainable RL policy.
arXiv Detail & Related papers (2021-11-13T18:48:28Z) - Robust Model-based Reinforcement Learning for Autonomous Greenhouse
Control [9.022924636907412]
reinforcement learning (RL) algorithms can surpass human beings' decision-making and can be seamlessly integrated into the closed-loop control framework.
In this paper, we present a model-based robust RL framework for autonomous greenhouse control to meet the sample efficiency and safety challenges.
arXiv Detail & Related papers (2021-08-26T08:27:10Z) - Deluca -- A Differentiable Control Library: Environments, Methods, and
Benchmarking [52.44199258132215]
We present an open-source library of differentiable physics and robotics environments.
The library features several popular environments, including classical control settings from OpenAI Gym.
We give several use-cases of new scientific results obtained using the library.
arXiv Detail & Related papers (2021-02-19T15:06:47Z) - Reinforcement Learning for Control of Valves [0.0]
This paper is a study of reinforcement learning (RL) as an optimal-control strategy for control of nonlinear valves.
It is evaluated against the PID (proportional-integral-derivative) strategy, using a unified framework.
arXiv Detail & Related papers (2020-12-29T09:01:47Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z) - A Relearning Approach to Reinforcement Learning for Control of Smart
Buildings [1.8799681615947088]
This paper demonstrates that continual relearning of control policies using incremental deep reinforcement learning (RL) can improve policy learning for non-stationary processes.
We develop an incremental RL technique that simultaneously reduces building energy consumption without sacrificing overall comfort.
arXiv Detail & Related papers (2020-08-04T23:31:05Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.