論文の概要: AnyAttack: Targeted Adversarial Attacks on Vision-Language Models toward Any Images
- arxiv url: http://arxiv.org/abs/2410.05346v2
- Date: Tue, 17 Dec 2024 15:32:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:55:57.689230
- Title: AnyAttack: Targeted Adversarial Attacks on Vision-Language Models toward Any Images
- Title(参考訳): AnyAttack:あらゆる画像に対するビジョンランゲージモデルに対する敵対的攻撃を狙う
- Authors: Jiaming Zhang, Junhong Ye, Xingjun Ma, Yige Li, Yunfan Yang, Jitao Sang, Dit-Yan Yeung,
- Abstract要約: 我々は、ラベル管理なしでビジョンランゲージモデルに対してターゲットとなる敵画像を生成する自己教師型フレームワークであるAnyAttackを提案する。
我々のフレームワークは、大規模LAION-400Mデータセットで事前学習された逆雑音発生器を用いて、事前学習と微調整のパラダイムを採用している。
- 参考スコア(独自算出の注目度): 41.044385916368455
- License:
- Abstract: Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks, particularly targeted adversarial images that manipulate the model to generate harmful content specified by the adversary. Current attack methods rely on predefined target labels to create targeted adversarial attacks, which limits their scalability and applicability for large-scale robustness evaluations. In this paper, we propose AnyAttack, a self-supervised framework that generates targeted adversarial images for VLMs without label supervision, allowing any image to serve as a target for the attack. Our framework employs the pre-training and fine-tuning paradigm, with the adversarial noise generator pre-trained on the large-scale LAION-400M dataset. This large-scale pre-training endows our method with powerful transferability across a wide range of VLMs. Extensive experiments on five mainstream open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) across three multimodal tasks (image-text retrieval, multimodal classification, and image captioning) demonstrate the effectiveness of our attack. Additionally, we successfully transfer AnyAttack to multiple commercial VLMs, including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT. These results reveal an unprecedented risk to VLMs, highlighting the need for effective countermeasures.
- Abstract(参考訳): マルチモーダルな機能のため、VLM(Vision-Language Models)は現実世界のシナリオで多くの影響のあるアプリケーションを発見している。
しかし、最近の研究では、VLMは画像ベースの敵攻撃、特に敵が特定する有害なコンテンツを生成するためにモデルを操作するターゲットの敵画像に対して脆弱であることが明らかになっている。
現在の攻撃方法は、目標とする敵攻撃を生成するために事前に定義された目標ラベルに依存しており、大規模なロバストネス評価に対するスケーラビリティと適用性を制限している。
本稿では,ラベル管理なしでVLMの標的画像を生成する自己教師型フレームワークであるAnyAttackを提案する。
我々のフレームワークは、大規模LAION-400Mデータセットで事前学習された逆雑音発生器を用いて、事前学習と微調整のパラダイムを採用している。
この大規模事前学習は,VLMの広い範囲にわたる強力な伝達性を実現する。
5つの主要なオープンソースVLM(CLIP, BLIP, BLIP2, InstructBLIP, MiniGPT-4)の多モーダルタスク(画像テキスト検索, マルチモーダル分類, 画像キャプション)に対する大規模な実験により, 攻撃の有効性が示された。
さらに、AnyAttackをGoogle Gemini、Claude Sonnet、Microsoft Copilot、OpenAI GPTを含む複数の商用VLMに転送することに成功しました。
これらの結果は、VLMに対する前例のないリスクを明らかにし、効果的な対策の必要性を浮き彫りにした。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Adversarial Robustness for Visual Grounding of Multimodal Large Language Models [49.71757071535619]
MLLM(Multi-modal Large Language Models)は近年,様々な視覚言語タスクのパフォーマンス向上を実現している。
MLLMでは、視覚的グラウンドリングの対角的堅牢性は未発見のままである。
本稿では,次の3つの攻撃パラダイムを提案する。
論文 参考訳(メタデータ) (2024-05-16T10:54:26Z) - Revisiting the Adversarial Robustness of Vision Language Models: a Multimodal Perspective [42.04728834962863]
CLIPのような事前訓練された視覚言語モデル(VLM)は、様々な下流タスクにまたがる例外的な一般化を示している。
近年の研究では、テキストベースおよびマルチモーダル攻撃に対する防御がほとんど未調査のままであり、敵攻撃に対する脆弱性が明らかにされている。
本研究は,画像,テキスト,マルチモーダル入力を標的とした攻撃に対して,VLMの対角的堅牢性を改善するための最初の総合的研究である。
論文 参考訳(メタデータ) (2024-04-30T06:34:21Z) - VL-Trojan: Multimodal Instruction Backdoor Attacks against
Autoregressive Visual Language Models [65.23688155159398]
VLM(Autoregressive Visual Language Models)は、マルチモーダルなコンテキストにおいて、驚くべき数ショットの学習機能を示す。
近年,マルチモーダル・インストラクション・チューニングが提案されている。
敵は、指示や画像に埋め込まれたトリガーで有毒なサンプルを注入することで、バックドアを埋め込むことができる。
本稿では,マルチモーダルなバックドア攻撃,すなわちVL-Trojanを提案する。
論文 参考訳(メタデータ) (2024-02-21T14:54:30Z) - VLATTACK: Multimodal Adversarial Attacks on Vision-Language Tasks via
Pre-trained Models [46.14455492739906]
VL(Vision-Language)事前訓練モデルは、多くのマルチモーダルタスクにおいて優位性を示している。
既存のアプローチは主に、ホワイトボックス設定下での敵の堅牢性を探究することに焦点を当てている。
本稿では,VLATTACKを用いて,画像とテキストの摂動を単一モードレベルとマルチモードレベルの両方から分離し,対向サンプルを生成する。
論文 参考訳(メタデータ) (2023-10-07T02:18:52Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
大規模視覚言語モデル(VLM)のロバスト性を,最も現実的で高リスクな環境で評価する。
特に,CLIP や BLIP などの事前学習モデルに対して,まず攻撃対象のサンプルを作成する。
これらのVLM上のブラックボックスクエリは、ターゲットの回避の効果をさらに向上させることができる。
論文 参考訳(メタデータ) (2023-05-26T13:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。