Designing a Classifier for Active Fire Detection from Multispectral Satellite Imagery Using Neural Architecture Search
- URL: http://arxiv.org/abs/2410.05425v2
- Date: Fri, 11 Oct 2024 13:32:32 GMT
- Title: Designing a Classifier for Active Fire Detection from Multispectral Satellite Imagery Using Neural Architecture Search
- Authors: Amber Cassimon, Phil Reiter, Siegfried Mercelis, Kevin Mets,
- Abstract summary: This paper showcases the use of a reinforcement learning-based Neural Architecture Search (NAS) agent to design a small neural network to perform active fire detection on multispectral satellite imagery.
Specifically, we aim to design a neural network that can determine if a single multispectral pixel is a part of a fire, and do so within the constraints of a Low Earth Orbit (LEO) nanosatellite with a limited power budget.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper showcases the use of a reinforcement learning-based Neural Architecture Search (NAS) agent to design a small neural network to perform active fire detection on multispectral satellite imagery. Specifically, we aim to design a neural network that can determine if a single multispectral pixel is a part of a fire, and do so within the constraints of a Low Earth Orbit (LEO) nanosatellite with a limited power budget, to facilitate on-board processing of sensor data. In order to use reinforcement learning, a reward function is needed. We supply this reward function in the shape of a regression model that predicts the F1 score obtained by a particular architecture, following quantization to INT8 precision, from purely architectural features. This model is trained by collecting a random sample of neural network architectures, training these architectures, and collecting their classification performance statistics. Besides the F1 score, we also include the total number of trainable parameters in our reward function to limit the size of the designed model and ensure it fits within the resource constraints imposed by nanosatellite platforms. Finally, we deployed the best neural network to the Google Coral Micro Dev Board and evaluated its inference latency and power consumption. This neural network consists of 1,716 trainable parameters, takes on average 984{\mu}s to inference, and consumes around 800mW to perform inference. These results show that our reinforcement learning-based NAS approach can be successfully applied to novel problems not tackled before.
Related papers
- Simultaneous Weight and Architecture Optimization for Neural Networks [6.2241272327831485]
We introduce a novel neural network training framework that transforms the process by learning architecture and parameters simultaneously with gradient descent.
Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other.
Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
arXiv Detail & Related papers (2024-10-10T19:57:36Z) - NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
We propose a zero-cost proxy Network Expressivity by Activation Rank (NEAR) to identify the optimal neural network without training.
We demonstrate the cutting-edge correlation between this network score and the model accuracy on NAS-Bench-101 and NATS-Bench-SSS/TSS.
arXiv Detail & Related papers (2024-08-16T14:38:14Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.