Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection
- URL: http://arxiv.org/abs/2410.05466v1
- Date: Mon, 7 Oct 2024 19:51:46 GMT
- Title: Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection
- Authors: Monu, Rohan Raju Dhanakshirur,
- Abstract summary: Deepfake technology has raised significant concerns about digital media integrity.
Most standard image classifiers fail to distinguish between fake and real faces.
We propose an enhanced architecture based on the GenConViT model, which incorporates weighted loss and update augmentation techniques.
This proposed model improves the F1 score by 1.71% and the accuracy by 4.34% on the Celeb-DF v2 dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid increase in deepfake technology has raised significant concerns about digital media integrity. Detecting deepfakes is crucial for safeguarding digital media. However, most standard image classifiers fail to distinguish between fake and real faces. Our analysis reveals that this failure is due to the model's inability to explicitly focus on the artefacts typically in deepfakes. We propose an enhanced architecture based on the GenConViT model, which incorporates weighted loss and update augmentation techniques and includes masked eye pretraining. This proposed model improves the F1 score by 1.71% and the accuracy by 4.34% on the Celeb-DF v2 dataset. The source code for our model is available at https://github.com/Monu-Khicher-1/multi-stage-learning
Related papers
- Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
Deep generative models can create remarkably fake images while raising concerns about misinformation and copyright infringement.
Deepfake detection technique is developed to distinguish between real and fake images.
We propose a novel approach called AntifakePrompt, using Vision-Language Models and prompt tuning techniques.
arXiv Detail & Related papers (2023-10-26T14:23:45Z) - Robustness and Generalizability of Deepfake Detection: A Study with
Diffusion Models [35.188364409869465]
We present an investigation into how deepfakes are produced and how they can be identified.
The cornerstone of our research is a rich collection of artificial celebrity faces, titled DeepFakeFace.
This data serves as a robust foundation to train and test algorithms designed to spot deepfakes.
arXiv Detail & Related papers (2023-09-05T13:22:41Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Hybrid Transformer Network for Deepfake Detection [2.644723682054489]
We propose a novel hybrid transformer network utilizing early feature fusion strategy for deepfake video detection.
Our model achieves comparable results to other more advanced state-of-the-art approaches when evaluated on FaceForensics++ and DFDC benchmarks.
We also propose novel face cut-out augmentations, as well as random cut-out augmentations.
arXiv Detail & Related papers (2022-08-11T13:30:42Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Model Attribution of Face-swap Deepfake Videos [39.771800841412414]
We first introduce a new dataset with DeepFakes from Different Models (DFDM) based on several Autoencoder models.
Specifically, five generation models with variations in encoder, decoder, intermediate layer, input resolution, and compression ratio have been used to generate a total of 6,450 Deepfake videos.
We take Deepfakes model attribution as a multiclass classification task and propose a spatial and temporal attention based method to explore the differences among Deepfakes.
arXiv Detail & Related papers (2022-02-25T20:05:18Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Adversarially robust deepfake media detection using fused convolutional
neural network predictions [79.00202519223662]
Current deepfake detection systems struggle against unseen data.
We employ three different deep Convolutional Neural Network (CNN) models to classify fake and real images extracted from videos.
The proposed technique outperforms state-of-the-art models with 96.5% accuracy.
arXiv Detail & Related papers (2021-02-11T11:28:00Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.