Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances
- URL: http://arxiv.org/abs/2309.06751v1
- Date: Wed, 13 Sep 2023 06:48:32 GMT
- Title: Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances
- Authors: Xiangrong Zhang, Tianyang Zhang, Guanchun Wang, Peng Zhu, Xu Tang,
Xiuping Jia, and Licheng Jiao
- Abstract summary: This review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods.
We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision.
We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD.
- Score: 51.70835702029498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing object detection (RSOD), one of the most fundamental and
challenging tasks in the remote sensing field, has received longstanding
attention. In recent years, deep learning techniques have demonstrated robust
feature representation capabilities and led to a big leap in the development of
RSOD techniques. In this era of rapid technical evolution, this review aims to
present a comprehensive review of the recent achievements in deep learning
based RSOD methods. More than 300 papers are covered in this review. We
identify five main challenges in RSOD, including multi-scale object detection,
rotated object detection, weak object detection, tiny object detection, and
object detection with limited supervision, and systematically review the
corresponding methods developed in a hierarchical division manner. We also
review the widely used benchmark datasets and evaluation metrics within the
field of RSOD, as well as the application scenarios for RSOD. Future research
directions are provided for further promoting the research in RSOD.
Related papers
- Open World Object Detection: A Survey [16.839310066730533]
Open world object detection (OWOD) is an emerging area of research that adapts this principle to explore new knowledge.
This paper offers a thorough review of the OWOD domain, covering essential aspects, including problem definitions, benchmark datasets, source codes, evaluation metrics, and a comparative study of existing methods.
The paper concludes by addressing the limitations and challenges faced by current OWOD algorithms and proposes directions for future research.
arXiv Detail & Related papers (2024-10-15T05:46:00Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot object detection (FSOD) combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples.
This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years.
arXiv Detail & Related papers (2024-04-07T03:37:29Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing.
Recent years have witnessed remarkable progress in oriented object detection using deep learning techniques.
arXiv Detail & Related papers (2023-02-21T06:31:53Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD) mimics the humans' ability of learning to learn.
FSOD intelligently transfers the learned generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes.
We give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols.
arXiv Detail & Related papers (2022-03-27T04:11:28Z) - A Survey of Deep Learning for Low-Shot Object Detection [44.20187548691372]
Low-Shot Object Detection (LSOD) is an emerging research topic of detecting objects from a few or even no annotated samples.
This survey provides a comprehensive review of LSOD methods.
arXiv Detail & Related papers (2021-12-06T06:56:00Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
Object pose detection and tracking has attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality.
Deep learning is the most promising one that has shown better performance than others.
This paper presents a comprehensive review of recent progress in object pose detection and tracking that belongs to the deep learning technical route.
arXiv Detail & Related papers (2021-05-29T12:59:29Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.