論文の概要: Robust Transfer Learning for Active Level Set Estimation with Locally Adaptive Gaussian Process Prior
- arxiv url: http://arxiv.org/abs/2410.05660v1
- Date: Tue, 8 Oct 2024 03:19:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 17:19:21.122733
- Title: Robust Transfer Learning for Active Level Set Estimation with Locally Adaptive Gaussian Process Prior
- Title(参考訳): 局所適応ガウス過程を用いたアクティブレベルセット推定のためのロバスト変換学習
- Authors: Giang Ngo, Dang Nguyen, Sunil Gupta,
- Abstract要約: ブラックボックス関数のアクティブレベル設定推定の目的は、関数値が指定された閾値を超えるか低下する領域を正確に識別することである。
ブラックボックス関数をサンプリング効率よくモデル化するための有望な方法は、関連する関数から事前知識を取り入れることである。
本稿では,与えられた事前知識を安全に統合し,頑健な性能を保証するために常に調整する,アクティブなレベルセット推定のための新しいトランスファー学習手法を提案する。
- 参考スコア(独自算出の注目度): 10.609848119555975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of active level set estimation for a black-box function is to precisely identify regions where the function values exceed or fall below a specified threshold by iteratively performing function evaluations to gather more information about the function. This becomes particularly important when function evaluations are costly, drastically limiting our ability to acquire large datasets. A promising way to sample-efficiently model the black-box function is by incorporating prior knowledge from a related function. However, this approach risks slowing down the estimation task if the prior knowledge is irrelevant or misleading. In this paper, we present a novel transfer learning method for active level set estimation that safely integrates a given prior knowledge while constantly adjusting it to guarantee a robust performance of a level set estimation algorithm even when the prior knowledge is irrelevant. We theoretically analyze this algorithm to show that it has a better level set convergence compared to standard transfer learning approaches that do not make any adjustment to the prior. Additionally, extensive experiments across multiple datasets confirm the effectiveness of our method when applied to various different level set estimation algorithms as well as different transfer learning scenarios.
- Abstract(参考訳): ブラックボックス関数のアクティブレベル設定推定の目的は、関数評価を反復的に行い、関数値が指定された閾値を超えるか低下する領域を正確に識別し、関数に関するより多くの情報を集めることである。
これは、関数評価がコストがかかる場合に特に重要になり、大規模なデータセットを取得する能力が大幅に制限される。
ブラックボックス関数をサンプリング効率よくモデル化するための有望な方法は、関連する関数から事前知識を取り入れることである。
しかし、このアプローチは、事前の知識が無関係である場合や誤解を招く場合、見積もりタスクを遅くするリスクがある。
本稿では,事前知識が無関係である場合でも,所定の事前知識を常に調整しながら,段階セット推定アルゴリズムのロバストな性能を保証しながら,その事前知識を安全に統合する,アクティブなレベルセット推定のための新しい伝達学習手法を提案する。
このアルゴリズムを理論的に解析し、事前調整を行わない標準的な移動学習手法と比較して、より優れたレベルセット収束性を示す。
さらに、複数のデータセットにわたる広範な実験により、様々なレベルセット推定アルゴリズムと異なる転送学習シナリオに適用した場合、本手法の有効性が確認された。
関連論文リスト
- Vlearn: Off-Policy Learning with Efficient State-Value Function Estimation [22.129001951441015]
既存の非政治強化学習アルゴリズムは、しばしば明示的な状態-作用-値関数表現に依存している。
この信頼性は、高次元の作用空間における状態-作用値関数の維持が困難なデータ非効率をもたらす。
本稿では,非政治的な深層強化学習に対する批判として,状態値関数のみを利用する効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-07T12:45:51Z) - NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
ニューラル・タンジェント・カーネル・クラスタリング・プシュード・ラベル(NTKCPL)の新しいアクティブ・ラーニング・ストラテジーを提案する。
擬似ラベルとNTK近似を用いたモデル予測に基づいて経験的リスクを推定する。
提案手法を5つのデータセット上で検証し,ほとんどの場合,ベースライン法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-07T01:43:47Z) - Accelerating Policy Gradient by Estimating Value Function from Prior
Computation in Deep Reinforcement Learning [16.999444076456268]
そこで本研究では,事前計算を用いて値関数を推定し,オンライン政策勾配法におけるサンプル効率を向上する方法について検討する。
特に,対象タスクに対する新しい値関数を事前の値推定と組み合わせて学習する。
結果の値関数は、ポリシー勾配法におけるベースラインとして使用される。
論文 参考訳(メタデータ) (2023-02-02T20:23:22Z) - Transferability Estimation Based On Principal Gradient Expectation [68.97403769157117]
クロスタスク転送性は、自己整合性を維持しながら転送結果と互換性がある。
既存の転送可能性メトリクスは、ソースとターゲットタスクを会話することで、特定のモデルに基づいて推定される。
本稿では,タスク間の転送可能性を評価するための簡易かつ効果的な手法であるPGEを提案する。
論文 参考訳(メタデータ) (2022-11-29T15:33:02Z) - Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning [3.7507283158673212]
本稿では,畳み込みニューラルネットワーク(CNN)を用いた深層能動学習における不確かさの計算方法を提案する。
CNN が抽出した特徴表現を Sum-Product Network (SPN) のトレーニングデータとして利用する。
論文 参考訳(メタデータ) (2022-06-20T14:28:19Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - A Generalized Bootstrap Target for Value-Learning, Efficiently Combining
Value and Feature Predictions [39.17511693008055]
値関数の推定は強化学習アルゴリズムのコアコンポーネントである。
値関数を推定する際に使用されるターゲットのブートストラップに焦点を当てる。
新たなバックアップターゲットである$eta$-returnmixを提案する。
論文 参考訳(メタデータ) (2022-01-05T21:54:55Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
複雑度が状態数に依存しない意思決定プロセスにおける強化学習のための効率的なアルゴリズムについて検討する。
このような弱い学習手法の精度を向上させることができる効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-08-22T16:00:45Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
我々は情報理論のレンズを通して連続学習過程を研究する。
モデルパラメータの情報利得を維持するビットレベル情報保存(BLIP)を提案する。
BLIPは、連続的な学習を通してメモリオーバーヘッドを一定に保ちながら、ほとんど忘れることができない。
論文 参考訳(メタデータ) (2021-05-10T15:09:01Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
本稿では,ベイズニューラルネットワークを用いた高次元レベル集合推定問題を解く新しい手法を提案する。
各問題に対して対応する理論情報に基づく取得関数を導出してデータポイントをサンプリングする。
合成データセットと実世界データセットの数値実験により,提案手法は既存手法よりも優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2020-12-17T23:21:53Z) - Zeroth-Order Supervised Policy Improvement [94.0748002906652]
政策勾配(PG)アルゴリズムは強化学習(RL)に広く用いられている。
ゼロ次監視政策改善(ZOSPI)を提案する。
ZOSPIは、PGメソッドの局所的な利用を保ちながら、推定値関数を全世界で$Q$で活用する。
論文 参考訳(メタデータ) (2020-06-11T16:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。