論文の概要: Copiloting Diagnosis of Autism in Real Clinical Scenarios via LLMs
- arxiv url: http://arxiv.org/abs/2410.05684v1
- Date: Thu, 10 Oct 2024 03:24:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 16:59:10.239093
- Title: Copiloting Diagnosis of Autism in Real Clinical Scenarios via LLMs
- Title(参考訳): LLMを用いた臨床シナリオにおける自閉症のコパイロット診断
- Authors: Yi Jiang, Qingyang Shen, Shuzhong Lai, Shunyu Qi, Qian Zheng, Lin Yao, Yueming Wang, Gang Pan,
- Abstract要約: 我々はADOS-Copilotというフレームワークを提案し、スコアと説明のバランスをとる。
以上の結果から,本フレームワークは臨床医の診断と競合する可能性が示唆された。
- 参考スコア(独自算出の注目度): 25.380978438307267
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autism spectrum disorder(ASD) is a pervasive developmental disorder that significantly impacts the daily functioning and social participation of individuals. Despite the abundance of research focused on supporting the clinical diagnosis of ASD, there is still a lack of systematic and comprehensive exploration in the field of methods based on Large Language Models (LLMs), particularly regarding the real-world clinical diagnostic scenarios based on Autism Diagnostic Observation Schedule, Second Edition (ADOS-2). Therefore, we have proposed a framework called ADOS-Copilot, which strikes a balance between scoring and explanation and explored the factors that influence the performance of LLMs in this task. The experimental results indicate that our proposed framework is competitive with the diagnostic results of clinicians, with a minimum MAE of 0.4643, binary classification F1-score of 81.79\%, and ternary classification F1-score of 78.37\%. Furthermore, we have systematically elucidated the strengths and limitations of current LLMs in this task from the perspectives of ADOS-2, LLMs' capabilities, language, and model scale aiming to inspire and guide the future application of LLMs in a broader fields of mental health disorders. We hope for more research to be transferred into real clinical practice, opening a window of kindness to the world for eccentric children.
- Abstract(参考訳): 自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、個人の日常生活機能や社会的関与に大きな影響を及ぼす広汎な発達障害である。
ASDの臨床診断を支援する研究が豊富にあるにもかかわらず、大規模言語モデル(LLMs)に基づく手法の分野、特に自閉症診断観察スケジュール(ADOS-2)に基づく現実的な臨床診断シナリオに関して、体系的かつ包括的な調査はいまだにない。
そこで我々は,ADOS-Copilotというフレームワークを提案し,評価と説明のバランスを保ち,LLMの性能に影響を及ぼす要因について検討した。
実験の結果,本フレームワークは臨床医の診断結果と競合し,最小値0.4643,二分法F1スコア81.79\%,三分法F1スコア78.37\%であった。
ADOS-2, LLMの能力, 言語, モデルスケールの観点から, この課題における現在のLSMの強みと限界を体系的に解明し, メンタルヘルス障害の幅広い分野におけるLSMの今後の応用を刺激し指導することを目的とした。
我々は、もっと多くの研究を実際の臨床実践に移行し、偏見のある子供たちに優しさの窓を開けることを望んでいる。
関連論文リスト
- SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
大規模言語モデルは、一般的な医学的知識をエンコードする能力において有望な結果を示している。
内科的知識を活用しててててんかんの診断を行う技術について検討した。
論文 参考訳(メタデータ) (2024-07-03T11:02:12Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
我々はMIMIC IVデータセットから開発された新しいベンチマークであるCliBenchを紹介する。
このベンチマークは、臨床診断におけるLSMの能力を包括的かつ現実的に評価する。
臨床診断の熟練度を評価するため,先進LSMのゼロショット評価を行った。
論文 参考訳(メタデータ) (2024-06-14T11:10:17Z) - D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models [5.439020425819001]
大規模言語モデル(LLM)は、様々なタスクにおける顕著なパフォーマンスのために、大きな注目を集め、広く使われている。
しかし、幻覚、事実的矛盾、数値的定量的推論の限界などの問題を含む、彼ら自身の課題は存在しない。
論文 参考訳(メタデータ) (2024-05-07T10:11:14Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
評価の結果、スケーリング、トレーニングタイプ、アーキテクチャなどの要因がLLMのパフォーマンスに大きな影響を与えていることが明らかになった。
本研究は, これらのLCMの徹底的な再検討に着手し, 現状評価手法における不整合性に着目した。
これには、ANOVA、Tukey HSDテスト、GAMM、クラスタリング技術などが含まれる。
論文 参考訳(メタデータ) (2024-03-22T14:47:35Z) - Leveraging Large Language Models to Extract Information on Substance Use Disorder Severity from Clinical Notes: A Zero-shot Learning Approach [3.0962132663521227]
物質利用障害 (SUD) は、健康や社会に有害な影響があるとして大きな懸念を抱いている。
国際疾患分類(ICD-10)のような既存の診断符号化システムは、特定の診断のための粒度を欠いている。
従来の自然言語処理(NLP)手法は、このような多様な臨床言語を正確に解析する際の限界に直面している。
本研究では,臨床ノートから重症度関連情報を抽出するためのLarge Language Models (LLMs) の応用について検討した。
論文 参考訳(メタデータ) (2024-03-18T22:39:03Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Development and Testing of a Novel Large Language Model-Based Clinical
Decision Support Systems for Medication Safety in 12 Clinical Specialties [3.963266190903893]
本稿では, 安全な薬剤処方をサポートするために, 臨床診断支援システム (CDSS) として, 新規な検索言語モデル (LLM) フレームワークを導入する。
本研究は、12の異なる医療・外科専門分野の23の臨床ヴィグネットに61のプリスクリプティングエラーシナリオを組み込んだ。
論文 参考訳(メタデータ) (2024-01-29T16:03:29Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。