Reinforcement Learning From Imperfect Corrective Actions And Proxy Rewards
- URL: http://arxiv.org/abs/2410.05782v1
- Date: Tue, 8 Oct 2024 08:04:09 GMT
- Title: Reinforcement Learning From Imperfect Corrective Actions And Proxy Rewards
- Authors: Zhaohui Jiang, Xuening Feng, Paul Weng, Yifei Zhu, Yan Song, Tianze Zhou, Yujing Hu, Tangjie Lv, Changjie Fan,
- Abstract summary: We propose a novel value-based deep RL algorithm called Iterative learning from Corrective actions and Proxy rewards (ICoPro)
We experimentally validate our proposition on a variety of tasks (Atari games and autonomous driving on highway)
- Score: 38.056359612828466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practice, reinforcement learning (RL) agents are often trained with a possibly imperfect proxy reward function, which may lead to a human-agent alignment issue (i.e., the learned policy either converges to non-optimal performance with low cumulative rewards, or achieves high cumulative rewards but in undesired manner). To tackle this issue, we consider a framework where a human labeler can provide additional feedback in the form of corrective actions, which expresses the labeler's action preferences although this feedback may possibly be imperfect as well. In this setting, to obtain a better-aligned policy guided by both learning signals, we propose a novel value-based deep RL algorithm called Iterative learning from Corrective actions and Proxy rewards (ICoPro), which cycles through three phases: (1) Solicit sparse corrective actions from a human labeler on the agent's demonstrated trajectories; (2) Incorporate these corrective actions into the Q-function using a margin loss to enforce adherence to labeler's preferences; (3) Train the agent with standard RL losses regularized with a margin loss to learn from proxy rewards and propagate the Q-values learned from human feedback. Moreover, another novel design in our approach is to integrate pseudo-labels from the target Q-network to reduce human labor and further stabilize training. We experimentally validate our proposition on a variety of tasks (Atari games and autonomous driving on highway). On the one hand, using proxy rewards with different levels of imperfection, our method can better align with human preferences and is more sample-efficient than baseline methods. On the other hand, facing corrective actions with different types of imperfection, our method can overcome the non-optimality of this feedback thanks to the guidance from proxy reward.
Related papers
- Adaptive Dense Reward: Understanding the Gap Between Action and Reward Space in Alignment [33.5805074836187]
Reinforcement Learning from Human Feedback (RLHF) has proven highly effective in aligning Large Language Models (LLMs) with human preferences.
This limitation stems from RLHF's lack of awareness regarding which specific tokens should be reinforced or suppressed.
We propose the Adaptive Message-wise RLHF'' method, which robustly applies to various tasks.
arXiv Detail & Related papers (2024-10-23T16:16:15Z) - Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards [26.40009657912622]
Reinforcement learning from human feedback (RLHF) is the mainstream paradigm used to align large language models (LLMs) with human preferences.
Yet existing RLHF heavily relies on accurate and informative reward models, which are vulnerable and sensitive to noise from various sources.
In this work, we improve the effectiveness of the reward model by introducing a penalty term on the reward, named as textitcontrastive rewards
arXiv Detail & Related papers (2024-03-12T14:51:57Z) - A Minimaximalist Approach to Reinforcement Learning from Human Feedback [49.45285664482369]
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback.
Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training.
We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches.
arXiv Detail & Related papers (2024-01-08T17:55:02Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
We focus on the problem of learning to reward, which is fundamental to reinforcement learning.
Previous approaches either introduce additional procedures for learning to reward, thereby increasing the complexity of optimization.
We propose a novel batch inverse reinforcement learning paradigm that achieves the desired properties.
arXiv Detail & Related papers (2023-10-30T13:43:20Z) - A State Augmentation based approach to Reinforcement Learning from Human
Preferences [20.13307800821161]
Preference Based Reinforcement Learning attempts to solve the issue by utilizing binary feedbacks on queried trajectory pairs.
We present a state augmentation technique that allows the agent's reward model to be robust.
arXiv Detail & Related papers (2023-02-17T07:10:50Z) - Simultaneous Double Q-learning with Conservative Advantage Learning for
Actor-Critic Methods [133.85604983925282]
We propose Simultaneous Double Q-learning with Conservative Advantage Learning (SDQ-CAL)
Our algorithm realizes less biased value estimation and achieves state-of-the-art performance in a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2022-05-08T09:17:16Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.