Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards
- URL: http://arxiv.org/abs/2403.07708v2
- Date: Thu, 14 Mar 2024 02:02:31 GMT
- Title: Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards
- Authors: Wei Shen, Xiaoying Zhang, Yuanshun Yao, Rui Zheng, Hongyi Guo, Yang Liu,
- Abstract summary: Reinforcement learning from human feedback (RLHF) is the mainstream paradigm used to align large language models (LLMs) with human preferences.
Yet existing RLHF heavily relies on accurate and informative reward models, which are vulnerable and sensitive to noise from various sources.
In this work, we improve the effectiveness of the reward model by introducing a penalty term on the reward, named as textitcontrastive rewards
- Score: 26.40009657912622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) is the mainstream paradigm used to align large language models (LLMs) with human preferences. Yet existing RLHF heavily relies on accurate and informative reward models, which are vulnerable and sensitive to noise from various sources, e.g. human labeling errors, making the pipeline fragile. In this work, we improve the effectiveness of the reward model by introducing a penalty term on the reward, named as \textit{contrastive rewards}. %Contrastive rewards Our approach involves two steps: (1) an offline sampling step to obtain responses to prompts that serve as baseline calculation and (2) a contrastive reward calculated using the baseline responses and used in the Proximal Policy Optimization (PPO) step. We show that contrastive rewards enable the LLM to penalize reward uncertainty, improve robustness, encourage improvement over baselines, calibrate according to task difficulty, and reduce variance in PPO. We show empirically contrastive rewards can improve RLHF substantially, evaluated by both GPTs and humans, and our method consistently outperforms strong baselines.
Related papers
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
This paper develops two RLHF algorithms without reward inference.
The key idea is to estimate the local value function difference from human preferences and then approximate the policy gradient with a zeroth-order gradient approximator.
Our results show there exist provably efficient methods to solve general RLHF problems without reward inference.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem.
PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins.
Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling.
arXiv Detail & Related papers (2024-04-01T07:49:11Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
We propose Weight Averaged Reward Models (WARM) to mitigate reward hacking.
Experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions.
arXiv Detail & Related papers (2024-01-22T18:27:08Z) - Uncertainty-Penalized Reinforcement Learning from Human Feedback with
Diverse Reward LoRA Ensembles [26.955375398765085]
Reinforcement learning from human feedback (RLHF) emerges as a promising paradigm for aligning large language models (LLMs)
In this paper, we observe the weakness of KL regularization which is commonly employed in existing RLHF methods to address overoptimization.
We propose uncertainty-penalized RLHF (UP-RLHF), which incorporates uncertainty regularization during RL-finetuning.
arXiv Detail & Related papers (2023-12-30T14:14:14Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
We focus on the problem of learning to reward, which is fundamental to reinforcement learning.
Previous approaches either introduce additional procedures for learning to reward, thereby increasing the complexity of optimization.
We propose a novel batch inverse reinforcement learning paradigm that achieves the desired properties.
arXiv Detail & Related papers (2023-10-30T13:43:20Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
We focus on two prevalent methods used to align large language models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods.
Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement.
arXiv Detail & Related papers (2023-10-25T16:52:00Z) - Stabilizing RLHF through Advantage Model and Selective Rehearsal [57.504894664689]
Large Language Models (LLMs) have revolutionized natural language processing, yet aligning these models with human values and preferences remains a significant challenge.
This challenge is characterized by various instabilities, such as reward hacking and catastrophic forgetting.
We propose two innovations to stabilize RLHF training: 1) Advantage Model, which directly models advantage score and regulates score distributions across tasks to prevent reward hacking; and 2) Selective Rehearsal, which mitigates catastrophic forgetting by strategically selecting data for PPO training and knowledge rehearsing.
arXiv Detail & Related papers (2023-09-18T23:06:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.