Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
- URL: http://arxiv.org/abs/2410.05838v2
- Date: Thu, 09 Jan 2025 14:04:01 GMT
- Title: Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
- Authors: Oleg Filatov, Jan Ebert, Jiangtao Wang, Stefan Kesselheim,
- Abstract summary: We show an intricate dependence of optimal $eta$ scaling on the pretraining token budget $T$, $B$ and its relation to the critical batch size $B_mathrmcrit$.<n>Surprisingly, our results demonstrate that the observed optimal $eta$ and $B$ dynamics are preserved with $mu$P model scaling.
- Score: 1.8337746049048673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate $\eta$ and batch size $B$. While techniques like $\mu$P (Yang et al., 2022) provide scaling rules for optimal $\eta$ transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal $\eta$ scaling on the pretraining token budget $T$, $B$ and its relation to the critical batch size $B_\mathrm{crit}$, which we measure to evolve as $B_\mathrm{crit} \propto T$. Furthermore, we show that the optimal batch size is positively correlated with $B_\mathrm{crit}$: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal $\eta$ and $B$ dynamics are preserved with $\mu$P model scaling, challenging the conventional view of $B_\mathrm{crit}$ dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of $T$ and to remain constant with $\mu$P model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
Related papers
- Active Subsampling for Measurement-Constrained M-Estimation of Individualized Thresholds with High-Dimensional Data [3.1138411427556445]
In the measurement-constrained problems, despite the availability of large datasets, we may be only affordable to observe the labels on a small portion of the large dataset.
This poses a critical question that which data points are most beneficial to label given a budget constraint.
In this paper, we focus on the estimation of the optimal individualized threshold in a measurement-constrained M-estimation framework.
arXiv Detail & Related papers (2024-11-21T00:21:17Z) - The Optimization Landscape of SGD Across the Feature Learning Strength [102.1353410293931]
We study the effect of scaling $gamma$ across a variety of models and datasets in the online training setting.
We find that optimal online performance is often found at large $gamma$.
Our findings indicate that analytical study of the large-$gamma$ limit may yield useful insights into the dynamics of representation learning in performant models.
arXiv Detail & Related papers (2024-10-06T22:30:14Z) - Improved Bound for Robust Causal Bandits with Linear Models [16.60875994745622]
This paper investigates the robustness of causal bandits in the face of temporal model fluctuations.
The proposed algorithm achieves nearly optimal $tildemathcalO(sqrtT)$ regret when $C$ is $o(sqrtT)$.
arXiv Detail & Related papers (2024-05-13T14:41:28Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Model approximation in MDPs with unbounded per-step cost [3.456139143869137]
We consider the problem of designing a control policy for an infinite-horizon discounted cost Markov decision process $mathcalM$ when we only have access to an approximate model $hatmathcalM$.
How well does an optimal policy $hatpistar$ of the approximate model perform when used in the original model $mathcalM$?
We provide upper bounds that explicitly depend on the weighted distance between cost functions and weighted distance between transition kernels of the original and approximate models.
arXiv Detail & Related papers (2024-02-13T21:36:30Z) - (Accelerated) Noise-adaptive Stochastic Heavy-Ball Momentum [7.095058159492494]
Heavy ball momentum (SHB) is commonly used to train machine learning models, and often provides empirical results over gradient descent.<n>We show that SHB can attain an accelerated mini-batch size when the mini-batch size is larger than a threshold $b*$ that on the condition number $kappa2$.
arXiv Detail & Related papers (2024-01-12T18:17:28Z) - Depth Dependence of $\mu$P Learning Rates in ReLU MLPs [72.14317069090407]
We study the dependence on $n$ and $L$ of the maximal update ($mu$P) learning rate.
We find that it has a non-trivial dependence of $L$, scaling like $L-3/2.$
arXiv Detail & Related papers (2023-05-13T01:10:49Z) - Lower Generalization Bounds for GD and SGD in Smooth Stochastic Convex
Optimization [9.019243171993553]
Training steps $T$ and step-size $eta$ might affect certify in smooth convex optimization (SCO) problems.
We first provide tight excess risk lower bounds for Gradient Descent (GD) and Gradient Descent (SGD)
Recent works show better rates can be attained but the improvement is reduced when training time is long.
arXiv Detail & Related papers (2023-03-19T20:24:33Z) - Restricted Strong Convexity of Deep Learning Models with Smooth
Activations [31.003601717265006]
We study the problem of optimization of deep learning models with smooth activation functions.
We introduce a new analysis of optimization based on Restricted Strong Convexity (RSC)
Ours is the first result on establishing geometric convergence of GD based on RSC for deep learning models.
arXiv Detail & Related papers (2022-09-29T21:24:26Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Online Convex Optimization with Continuous Switching Constraint [78.25064451417082]
We introduce the problem of online convex optimization with continuous switching constraint.
We show that, for strongly convex functions, the regret bound can be improved to $O(log T)$ for $S=Omega(log T)$, and $O(minT/exp(S)+S,T)$ for $S=O(log T)$.
arXiv Detail & Related papers (2021-03-21T11:43:35Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Fine-Grained Gap-Dependent Bounds for Tabular MDPs via Adaptive
Multi-Step Bootstrap [84.66885506098724]
This paper presents a new model-free algorithm for episodic finite-horizon Markov Decision Processes (MDP), Adaptive Multi-step Bootstrap (AMB)
We show AMB achieves a gap-dependent regret bound that only scales with the sum of the inverse of the sub-optimality gaps.
We also show AMB suffers an additional $frac|Z_mul|Delta_min$ regret, where $Z_mul$ is the set of state-action pairs $(s,a)$'s satisfying $a$ is a non-unique optimal action for
arXiv Detail & Related papers (2021-02-09T07:46:34Z) - Large-time asymptotics in deep learning [0.0]
We consider the impact of the final time $T$ (which may indicate the depth of a corresponding ResNet) in training.
For the classical $L2$--regularized empirical risk minimization problem, we show that the training error is at most of the order $mathcalOleft(frac1Tright)$.
In the setting of $ellp$--distance losses, we prove that both the training error and the optimal parameters are at most of the order $mathcalOleft(e-mu
arXiv Detail & Related papers (2020-08-06T07:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.