Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms
- URL: http://arxiv.org/abs/2202.11277v1
- Date: Wed, 23 Feb 2022 02:39:04 GMT
- Title: Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms
- Authors: Rajarshi Saha, Mert Pilanci, Andrea J. Goldsmith
- Abstract summary: We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
- Score: 59.724977092582535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of quantizing a linear model learned from
measurements $\mathbf{X} = \mathbf{W}\boldsymbol{\theta} + \mathbf{v}$. The
model is constrained to be representable using only $dB$-bits, where $B \in (0,
\infty)$ is a pre-specified budget and $d$ is the dimension of the model. We
derive an information-theoretic lower bound for the minimax risk under this
setting and show that it is tight with a matching upper bound. This upper bound
is achieved using randomized embedding based algorithms. We propose randomized
Hadamard embeddings that are computationally efficient while performing
near-optimally. We also show that our method and upper-bounds can be extended
for two-layer ReLU neural networks. Numerical simulations validate our
theoretical claims.
Related papers
- Theoretical limits of descending $\ell_0$ sparse-regression ML algorithms [0.0]
We develop a generic analytical program for studying performance of the emphmaximum-likelihood (ML) decoding.
Key ML performance parameter, the residual emphroot mean square error ($textbfRMSE$) is uncovered to exhibit the so-called emphphase-transition (PT) phenomenon.
Concrete implementation and practical relevance of the Fl RDT typically rely on the ability to conduct a sizeable set of the underlying numerical evaluations.
arXiv Detail & Related papers (2024-10-10T06:33:41Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Sharper Model-free Reinforcement Learning for Average-reward Markov
Decision Processes [21.77276136591518]
We develop provably efficient model-free reinforcement learning (RL) algorithms for Markov Decision Processes (MDPs)
In the simulator setting, we propose a model-free RL algorithm that finds an $epsilon$-optimal policy using $widetildeO left(fracSAmathrmsp(h*)epsilon2+fracS2Amathrmsp(h*)epsilon2right)$ samples.
arXiv Detail & Related papers (2023-06-28T17:43:19Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Exploration in Linear Bandits with Rich Action Sets and its Implications
for Inference [23.364534479492715]
We show that the minimum eigenvalue of the expected matrix grows as $Omega(sqrtn) whenever the expected cumulative regret of the algorithm is $sqrtn)$.
We apply our result to two practical scenarios -- emphmodel selection and emphclustering in linear bandits.
arXiv Detail & Related papers (2022-07-23T20:25:07Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
We show that when the sub-sample sizes are large then the estimation errors will be sacrificed by too much.
To the best of our knowledge, this is the first work that and guarantees for the lineartext+Stochasticity model.
arXiv Detail & Related papers (2020-10-19T07:15:38Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.