Unobserved Object Detection using Generative Models
- URL: http://arxiv.org/abs/2410.05869v1
- Date: Tue, 8 Oct 2024 09:57:14 GMT
- Title: Unobserved Object Detection using Generative Models
- Authors: Subhransu S. Bhattacharjee, Dylan Campbell, Rahul Shome,
- Abstract summary: This study introduces the novel task of 2D and 3D unobserved object detection for predicting the location of objects that are occluded or lie outside the image frame.
We adapt several state-of-the-art pre-trained generative models to solve this task, including 2D and 3D diffusion models and vision-language models.
- Score: 17.883297093049787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can we detect an object that is not visible in an image? This study introduces the novel task of 2D and 3D unobserved object detection for predicting the location of objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to solve this task, including 2D and 3D diffusion models and vision--language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that captures different aspects of performance. Our empirical evaluations on indoor scenes from the RealEstate10k dataset with COCO object categories demonstrate results that motivate the use of generative models for the unobserved object detection task. The current work presents a promising step towards compelling applications like visual search and probabilistic planning that can leverage object detection beyond what can be directly observed.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Measuring the Impact of Scene Level Objects on Object Detection: Towards
Quantitative Explanations of Detection Decisions [1.6385815610837167]
This paper presents a new black box explainability method for additional verification of object detection models.
By comparing the accuracies of a model on test data with and without certain scene level objects, the contributions of these objects to the model's performance becomes clearer.
arXiv Detail & Related papers (2024-01-19T16:21:55Z) - DR-WLC: Dimensionality Reduction cognition for object detection and pose
estimation by Watching, Learning and Checking [30.58114448119465]
Existing object detection and pose estimation methods mostly adopt the same-dimensional data for training.
DR-WLC, a dimensionality reduction cognitive model, can perform both object detection and pose estimation tasks at the same time.
arXiv Detail & Related papers (2023-01-17T15:08:32Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - Shape-Aware Monocular 3D Object Detection [15.693199934120077]
A single-stage monocular 3D object detection model is proposed.
The detection largely avoids interference from irrelevant regions surrounding the target objects.
A novel evaluation metric, namely average depth similarity (ADS) is proposed for the monocular 3D object detection models.
arXiv Detail & Related papers (2022-04-19T07:43:56Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
We propose a Suspected Object Transformation mechanism (SOT) to encourage the target object selection among the suspected ones.
SOT can be seamlessly integrated into existing CNN and Transformer-based one-stage visual grounders.
Extensive experiments demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2022-03-10T06:41:07Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3D object detection often involves complicated training and testing pipelines.
Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds.
arXiv Detail & Related papers (2021-10-13T17:59:38Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.