Improved Sample Complexity for Private Nonsmooth Nonconvex Optimization
- URL: http://arxiv.org/abs/2410.05880v1
- Date: Tue, 8 Oct 2024 10:15:49 GMT
- Title: Improved Sample Complexity for Private Nonsmooth Nonconvex Optimization
- Authors: Guy Kornowski, Daogao Liu, Kunal Talwar,
- Abstract summary: We study differentially private (DP) optimization algorithms for and empirical objectives which are neither smooth nor convex.
We provide a single-pass $(alpha,beta)$-DP algorithm that returns an $widetildeOmegaleft (1/alphabeta3+d/epsilonalphabeta2+d3/4/epsilonalpha1/2beta3/2right)$.
We then provide a multi-pass time algorithm which further improves the sample complexity to $widetildeOmegaleft(
- Score: 28.497079108813924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study differentially private (DP) optimization algorithms for stochastic and empirical objectives which are neither smooth nor convex, and propose methods that return a Goldstein-stationary point with sample complexity bounds that improve on existing works. We start by providing a single-pass $(\epsilon,\delta)$-DP algorithm that returns an $(\alpha,\beta)$-stationary point as long as the dataset is of size $\widetilde{\Omega}\left(1/\alpha\beta^{3}+d/\epsilon\alpha\beta^{2}+d^{3/4}/\epsilon^{1/2}\alpha\beta^{5/2}\right)$, which is $\Omega(\sqrt{d})$ times smaller than the algorithm of Zhang et al. [2024] for this task, where $d$ is the dimension. We then provide a multi-pass polynomial time algorithm which further improves the sample complexity to $\widetilde{\Omega}\left(d/\beta^2+d^{3/4}/\epsilon\alpha^{1/2}\beta^{3/2}\right)$, by designing a sample efficient ERM algorithm, and proving that Goldstein-stationary points generalize from the empirical loss to the population loss.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Replicability in Reinforcement Learning [46.89386344741442]
We focus on the fundamental setting of discounted MDPs with access to a generative model.
Inspired by Impagliazzo et al. [2022], we say that an RL algorithm is replicable if, with high probability, it outputs the exact same policy after two executions.
arXiv Detail & Related papers (2023-05-31T05:16:23Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.